

PA400V157M0J Specification

 $(400-V-150\mu F-6.3V-15m\Omega)$

Version: 01

Date: July 19, 2016

1. Application Range 2
2. Standard Source 2
3. Explanation of Part Numbers 2
4. Product Specifications 2
5. Configuration and Dimension 3
6. Characteristics 3
7. Marking ······· 6
8. Tape & Reel Packaging
9. Application Guidelines 7
10. Lead-Free Stance 9

1. Application Range

This specification is applicable to polymer aluminum electrolytic capacitors for electronic equipment.

2. Standard Source

Q/GGDZ 001-2015 《Polymer Aluminum Electrolytic Capacitors》 standard is drew up according to international standard IEC384-18《Fixed capacitors for use in electronic equipment Part 18: Sectional specification, Fixed aluminum electrolytic chip capacitors with solid and non-solid electrolyte》. The superior standard is GB/T 2693-2001 《Fixed capacitors for use in electronic equipment Part 1: Generic specification》.

3. Explanation of Part Numbers

3.1 Type designation

3.2 Rated voltage code

Rated voltage (V)	6.3
Voltage code	0J

4. Product Specifications

Item	Characteristics
Operating temperature range	-55~+105°C
Rated voltage (U _R)	6.3V.DC
Rated capacitance	150µF
Capacitance tolerance	120μF~180μF (M: ±20%)/120Hz 20°C
Leakage current (L C)	\leq 37.8µA (2minutes)
Dissipation factor(tg\delta)	≤0.06 (120Hz 20°C)
Equivalent series resistance (ESR)	$\leq 15 \mathrm{m}\Omega \left(100 \mathrm{kHz} 20^{\circ} \mathrm{C}\right)$

Part numbers	Rated voltage (V.DC)	Rated capacitance 120Hz/20°C (µF)	tgð 120Hz/20℃ max	L.C. max (µA) 2minutes	ESR 100kHz/20°C max (mΩ)	Rated ripple current 100kHz/20~105℃ max (A)
PA400V157M0J	6.3	150	0.06	37.8	15	3.9

5. Configuration and Dimension

5.1 Configuration

5.2 Size code and dimension

Unit:(mm)

Dimension Size code	L±0.2	W1±0.2	H±0.2	P±0.2	W2±0.1
V	7.3	4.3	1.9	1.3	2.4

6. Characteristics

	Item	Characteristics							
1	Capacitance range	120μF~180μF (120Hz 20°C)							
2	L.C. (I _L)	\leq 37.8µA (2minutes)							
3	Dissipation factor (tgδ)	≤0.06 (120Hz 20°C)							
4	Equivalent series resistance (ESR)	≤15mΩ (100kHz 20°C)							
		Dip soldering	Appearance	No visible damage, clear mark.					
5	Resistance to soldering heat	sistance to dering heat Dipping depth: 1.5~2.0mm Dipping time: 10±1s Stabilizing time: 24±2h	Capacitance change	$\leq \pm 5\%$ of initial value					
			Dissipation factor (tgδ)	≤0.06					

6	Resistance to solvents	Deionized water or distilled water, resistivity≥1MΩ·cm. Solvent temperature: 23±5°C Test time: 5±0.5min No wiping	Appearance Capacitance change Dissipation	No visible damage, clear mark. ≤±5% of initial value		
			factor (tgδ)	≤ 0.06		
			Appearance	mark.		
7	Bond strength of lead coating	Capacitor is measured when circuit board is bent	Capacitance change	$\leq \pm 5\%$ of initial value		
			Dissipation factor (tgδ)	≤0.06		
				No visible damage, clear mark.		
8	Temperature change fleetly	θ A: -55±3°C, θ B: +105±3°C 5 cycles, Time: 30min Stabilizing time :1 \sim 2h	Capacitance change	≤±10% of initial value		
			Dissipation factor (tgδ)	≤0.06		
			Leakage current (LC)	≤37.8µA		
		Test temperature:: +105±3°C, duration:	Appearance	No visible damage, clear mark.		
0	Climate order	16h First cycle of test Db: 24h	Capacitance change	$\leq \pm 10\%$ of initial value		
9		Low temperature: -55 ± 3 °C, duration:2h Other cycle of test Db, duration:24h for	Dissipation factor (tgδ)	≤0.06		
		each cycle, Stabilizing time: $1 \sim 2h$	Leakage current (LC)	<i>≤</i> 37.8μA		
		Test temperature: 60±2°C		No visible damage, clear mark.		
	Dome hoot	Test humidity: 93^{+2}_{-3} %RH	Capacitance	\leq -20%~+40% of initial		
10	Steady state	state No load				
	-	Test time: 21d	factor (tg\delta)	≤0.12		
		Stabilizing time: 1~2h	Leakage current (LC)	≤75.6µA		

				Appearance	No visible damage, clear mark.		
11	Frederingen	Test temperature: +1 Applied voltage: Rat	05±3℃ ted voltage	Capacitance change	$\leq \pm 20\%$ of initial value		
11	Endurance	Test time: 2000h Stabilizing time: 1 \sim	2h	Dissipation factor (tgδ)	≤0.09		
				Leakage $\leq 37.8 \mu A$ surrent (LC)			
			Step 2: Test	Capacitance change	≤±20% of initial value		
	Characteristics at	Step 1: Test	-55±3℃	Dissipation factor (tgδ)	≤0.12		
12	high and low	20±2℃;	Stop 2 . Tost	Capacitance change	≤±20% of initial value		
	temperature	measuring	temperature:	Dissipation factor (tgδ)	≤0.06		
			+105±5 C	Leakage current (LC)	≤189µA		
	Charge and discharge	Test temperature:15 Cycles: 1000000	~35℃	Capacitance change	≤±20% of initial value		
13		Charge: Rated DC	voltage, interior		≤37.8µA		
		resistance of power resistance according	to RC=0.1s	Leakage current (LC)			
		Charge time: 0.5s, Discharge time: 0.5s		Appearance	No visible damage, clear mark.		
14	Shelf life	Test temperature: +1	05±3℃	Capacitance change $\leq \pm 20\%$ of initial value			
14		Stabilizing time: 16h	L	Dissipation factor (tgδ)	≤0.06		
				Leakage current (LC)	≤75.6µA		
		Test temperature: 15~35°C Cycles: 1000 Applied Voltage: 1.25times of rated voltage Protection resistance: RC=0.1±0.05s Charge time: 30s, Discharge time: 5min30s		Appearance	No visible damage, clear mark.		
1-	Surge			Capacitance change	$\leq \pm 10\%$ of initial value		
15				Dissipation factor (tg δ) ≤ 0.06			
				Leakage current (LC)	≤37.8μA		

		Duration: Applying 0.15Up DC reverse	Capacitance	≤±20% of initial value
		voltage at+105 °C for 125h then	Dissipation	
16	16 Reverse voltage	wonage at 105 \odot 101 12511, then	factor(tas)	≤0.06
		apprying O_R DC voltage at +103 C tor	Tactor(tgo)	
		125h	Leakage	~75 Gu A
			current (LC)	≤/3.0µA

(+)

·b)

c)

a)

d)

e)

7. Marking

- a) Lead end polarity (Positive)
- b) Rated capacitance
- c) Rated voltage
- d) Company mark (G)

e) Lead end polarity (Negative)

8. Tape & Reel Packaging

Sketch map of embossed tape (Unit: mm)

A section

B section

Sie	de code		Tape dimension (mm)								
Code	L×W1×H (mm)	P0 ±0.10	P1 ±0.10	A0 ±0.20	B0 ±0.20	W ±0.30	K0 ±0.10	E1 ±0.10	F ±0.10	D0 +0.10 -0.00	7"reel (chip)
V	7.3×4.3×1.9	4.0	8.0	4.6	7.6	12	2.3	1.75	5.5	1.5	1200

9. Application Guidelines

To ensure the stable quality of the capacitor, and make full use of its capability, please read following guidelines before use:

9.1. Polarity

PA-Cap polymer aluminum electrolytic capacitors have polarity. Polarity must be identified before use. If the polarity is reversed, the leakage current of this capacitor will increase rapidly, even more it will make the circuit short.

9.2. Voltage

The application of over-voltage will increase the leakage current, so that the capacitor will be damaged because of the rise of its interior temperature. The sum of DC voltage and ripple voltage should not exceed the rated voltage.

9.3. Temperature

The capacitor must be used in or under the rated temperature. Operation at temperatures exceeding specifications will cause large changes in electrical properties. The potential deterioration will also lead to the failure of the capacitor. When thinking about the operating temperature of the capacitor, be sure to include not only the ambient temperature but also interior heat coming from the components.

9.4. Ripple current

Use the capacitor in permitted ripple current. When excessive ripple current is applied to the capacitor, it will cause the increasement of leakage current, short circuits and decreasing in life.

9.5. Storage of capacitor

Capacitors should be stored in a moisture proof and without direct sunlight environment. The prefer temperature is $5-30^{\circ}$ C, relative humidity is lower than 60%RH.

Moisture Sensitivity Level: Level 3.

To maintain good mounting capability, please keep it as the package in factory, and would better be used out after opening the package. The remains should be taken back to the package and sealed.

After the storage more than two years, drying treatment is first necessary, and DC voltage is gradually applied up to the rated voltage with 1K Ω /V series resistance and remains at rated voltage for 1h before use.

9.6. Capacitor measurement

Excessive impact current resulted from charge and discharge hastily will cause the increasement of leakage current, even short circuit. Therefore please contact a $1K\Omega$ protective resistance in series, and gradually increases the applied voltage up to the rated voltage during the leakage current measurement. Before other measurement, please discharge the capacitor fully with a $1K\Omega$ resistance in series.

9.7. Capacitor mounting

Recommend land-pattern:

PA-Cap is suit to re-flow soldering, recommended curve for soldering is as following.

Recommended curve for lead free soldering is as following:

When using the electric iron, the electric soldering bit should not touch the case. Make sure that the soldering temperature is no more than 350° C and the time is shorter than 3 seconds.

Before mounting, please confirm whether the lead size is suit to the designed dimensions of the circuit board.

Do not distort and apply strong force to the capacitor during mounting, otherwise the electrical performance of the capacitor will be affected greatly, even damaged. After it is soldered on PCB board, do not remove it with strong force.

In addition, re-flow soldering should be no more than twice.

- 9.8. Capacitors cannot be used in the following environments.
 - a) Contact directly with water, salt water or oil.
 - b) Full of deleterious chemically active gases
 - c) Exposed to direct sunlight.

10. Lead-Free Stance

All complete parts and homogenous materials of PA-Cap capacitors are lead-free.

PA400V157M0J Specification Version: 01 Date: July 19, 2016 Issued by Fujian Guoguang Electronic Science & Technology Co., Ltd. Address: No.160, Jiangbin East Road, Fuzhou Economic & Technical Development Zone, Fujian Tel: 86-591-83977660 83977578 83977129 Fax: 86-591-83977125 P.C.: 350015

http://www.fjgg.cn