

SM16206

概述

SM16206 是 LED 恒流驱动芯片,内建 CMOS 移位寄存器与锁存功能,可以将串行的输入数据转换成并行输出数据格式。

SM16206 工作电压为 3.3V—5.0V,提供 16 个电流源,可以在每个输出端口提供 1mA—32mA 的恒定电流;且单颗 IC 片内输出电流差异小于±2.5%;多颗 IC 间的输出电流差异小于±3.5%;通道输出电流不随着输出端电压(V_{DS})的变化而变化;且电流受电压和环境温度影响的变化小于 1%;每个通道的输出电流大小由外接电阻来调整。

SM16206 输出端口耐压可达+15V,因此可以在每个输出端串接多个 LED 灯;另外,SM16206 高达 25MHz 的时钟频率可以满足系统对大量数据传输的需求。

特点

- ◆ 16 通道恒流源输出
- ◆ 恒流电流:

1-32mA@VDD=5.0V

@片内误差<±2.5%, 片间误差<±3.5%

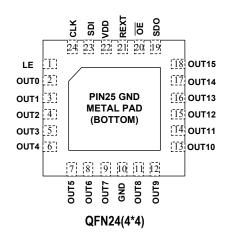
1-22mA@VDD=3.3V

@片内误差<±2.5%, 片间误差<±3.5%

- ◆ 输出电流外部 Rext 电阻可调
- ◆ 快速的输出电流响应, OE (最小值): 35ns
- ◆ 高达 25MHz 时钟频率
- ◆ 工作电压: 3.3V~5.0V
- ◆ 封装形式: SSOP24、QSOP24、QFN24(4*4)


应用领域

- ◆ LED 显示屏
- ◆ LED 照明


封装信息

产品名称	封装形式	塑封体尺寸 (mm)	脚间距 (mm)
SM16206D	SSOP24	13.0*6.0*1.8	1.0
SM16206S	QSOP24	8.65*3.9*1.4	0.635
SM16206N-2	QFN24(4*4)	4*4*0.85	0.5

管脚定义

(SSOP24/QSOP24)

电子邮件: market@chinaasic.com

网址: www.chinaasic.com

地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

注: 说明书更新版本请以公司网站公布为准

Fax: 0755-26991336

内部功能框图

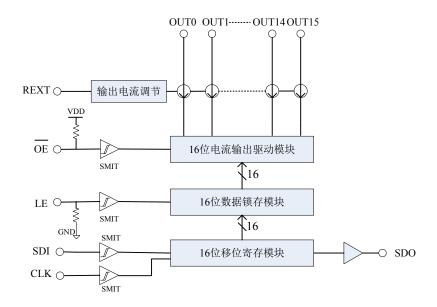


Fig. SM16206 内部功能框图

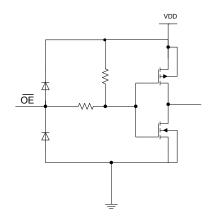
管脚说明

名称	功能说明
GND	芯片地
SDI	串行数据输入端口
CLK	时钟信号的输入端口,时钟上升沿时移位数据
LE	数据锁存控制端口,当 LE 为高电平时,串行数据会被传入至输出锁存器;当 LE 为低电平时,数
LE	据会被锁存
OUT0~OUT15	恒流驱动端口
OE.	输出使能控制端口,当 OE 为低电平时,即会启动 OUT0~OUT15 输出;当 OE 为高电平时,OUT0~
OE	OUT15 输出会被关闭
SDO	串行数据输出端口;可接至下一个芯片的 SDI 端口
R-EXT	连接外接电阻的输入端口; 此外接电阻可设定所有输出通道的输出电流
VDD	芯片电源

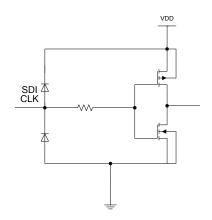
订购信息

订购型号	封装形式	包装方式		卷盘尺寸
7 网络 5	到表形具	管装	编带	仓
SM16206D	SSOP24	36000 颗/箱	2000 颗/盘	13寸
SM16206S	QSOP24	100000 颗/箱	4000 颗/盘	13寸
SM16206N-2	QFN24(4*4)	1	5000 颗/盘	13寸

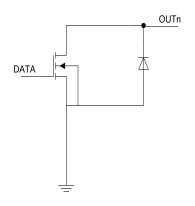
电子邮件: market@chinaasic.com 网址: <u>www.chinaasic.com</u>

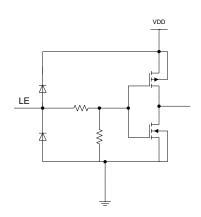

Tel: 0755-26991392

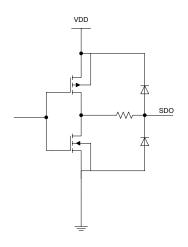
Fax: 0755-26991336


地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

输出及输入等效电路


◆ <u>OE</u> 输入端


◆ CLK,SDI 输入端

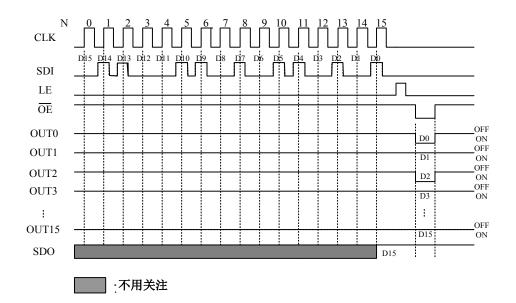

◆ OUT0~OUT15 输出端

LE 输入端

SDO 输出端

Fax: 0755-26991336

电子邮件: market@chinaasic.com


网址: <u>www.chinaasic.com</u>

地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

注: 说明书更新版本请以公司网站公布为准

时序图

真值表

CLK	LE	ŌĒ	SDI	OUT0····OUT7····OUT15	SDO
_	Н	L	Dn	DnDn-7Dn-15	Dn-15
_	L	L	Dn+1	No Change	Dn-14
_	Н	L	Dn+2	Dn+2Dn-5Dn-13	Dn-13
Y	X	L	Dn+3	Dn+2Dn-5Dn-13	Dn-13
Y _	X	Н	Dn+3	off	Dn-13

最大极限参数

特性	代表符号	最大限定范围	单位
电源电压	VDD	0~7.0	V
输入端电压	V _{SDA} ,V _{CLK} ,V _{LE} ,V _{OE}	-0.4∼VDD+0.4	V
OUT 端口电流	Іоит	45	mA
OUT 端口耐压	V_{DS}	-0.5∼+16.0	V
时钟频率	fclk	30	MHz
IC 工作时的环境温度	Topr	-40∼+85	°C
IC 储存时的环境温度	T_{stg}	-55∼+150	$^{\circ}$
HBM 人体放电模式	V _{ESD}	>4	KV

备注: 表贴产品焊接最高峰值温度不能超过 260℃,温度曲线依据 J-STD-020 标准、参考工厂实际和锡膏商建议由工厂自行设定。

电子邮件: market@chinaasic.com

Tel: 0755-26991392

Fax: 0755-26991336

网址: www.chinaasic.com

地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

直流特性

(VDD= 5.0V, Ta = 25°C)

特性	代表符号	测量	测量条件		典型值	最大值	单位
	I _{DD} (off)1	rext 悬空,OUT0~OUT15 = OFF		-	1.5	-	mA
静态电流	I _{DD} (off)2	$rext = 1800\Omega$, OUT	Γ0~OUT15 = OFF	-	2.6	-	mA
	I _{DD} (off)3	rext = 920Ω , OUT)~OUT15 = OFF	-	3.8	-	mA
	I _{OH}			-	-21	-	mA
SDO 驱动电流	l _{oL}	VDE) = 5.0V	-	21	-	mA
	V _{OL}	I _{OL} =	= +1mA	-	-	0.4	V
SDO 输出端电压	V _{OH}	Іон	= -1mA	4.6	-	-	V
AA > NII - STALL I T	VIH			0.7*VDD	-	VDD	V
输入端口翻转电平	V _{IL}	VDD=5.0V		GND	-	0.3*VDD	V
OUT 输出端漏电流	ILEAK	V _{DS} =15V,OUT0~OUT15 = OFF		-	-	0.5	uA
OUT 端口输出电流	Іоит	VDI) = 5.0V	1	-	32	mA
OUT 端口输出端电流 1	I _{OUT1}	V _{DS} =1.0V	rext = 1800Ω	-	9.2	-	mA
************		V _{DS} = 1.0V	片内	-	±2.5%	-	
输出电流误差	D _{IOUT}	rext = 1800Ω	片间	-	±3.5%	-	
OUT 端口输出端电流 2	I _{OUT2}	V _{DS} = 1.0V	rext = 920Ω	-	17.9	-	mA
************		VDS = 1.0V	片内	-	±2.5%	-	
输出电流误差	Diout	rext = 920Ω	片间	-	±3.5%	-	
输出电流误差/V _{DS} 变化量	%/∆V _{DS}	V _{DS} =1.0V∼3.0V,l _{OUT} =17.9mA		-	1	-	%/V
输出电流误差/vpp 变化量	%/∆V _{DD}	V_{DD} =4.5V \sim 5.5V $,\ \ I_{OUT}$ =17.9mA		-	1	-	%/V
Pull-up 电阻	R _{OE} (up)		OE	-	250	-	ΚΩ
Pull-down 电阻	$R_{LE^{(down)}}$		LE	-	250	-	ΚΩ

电子邮件: market@chinaasic.com

Tel: 0755-26991392

Fax: 0755-26991336

网址: <u>www.chinaasic.com</u>

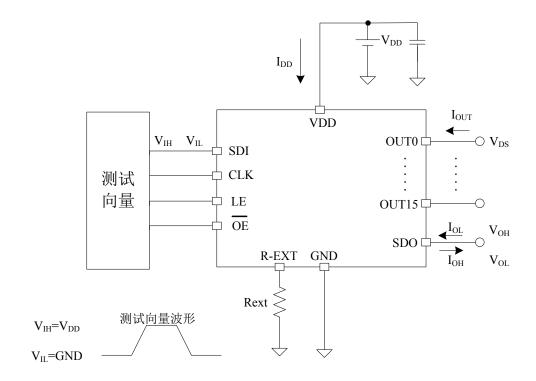
地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

(VDD=3.3V, Ta = 25° C)

特性	代表符号	测量条件		最小值	典型值	最大值	单位
	I _{DD} (off)1	rext 悬空,OUT0~OUT15 = OFF		-	1.2	-	mA
静态电流	I _{DD} (off)2	$rext = 1800\Omega$, OUT	Γ0~OUT15 = OFF	-	3.6	-	mA
	I _{DD} (off)3	rext = 920Ω , OUT	0~OUT15 = OFF	-	2.5	-	mA
	V _{OL}	I _{OL} =	= +1mA	-	-	0.3	V
SDO 输出端电压	V _{OH}	I _{OH}	= -1mA	3.0	-	-	V
000 35-1 4 12-	Іон			-	-10.5	-	mA
SDO 驱动电流	l _{oL}	YDL) = 3.3V	-	13.3	-	mA
	V _{IH}	VDD=3.3V		0.7*VDD	-	VDD	V
输入端口翻转电平	V _{IL}			GND	-	0.3*VDD	V
OUT 输出端漏电流	I _{LEAK}	V _{DS} =15V, OUT0~OUT15 = OFF		-	-	0.5	uA
OUT 端口输出电流	Іоит	VDI) =3.3V	1	-	22	mA
OUT 端口输出端电流 1	lout1	V _{DS} = 1.0V	rext = 1800Ω	-	9.2	-	mA
松山石冰口光		V _{DS} = 1.0V	片内	-	±2.5%	-	
输出电流误差	D _{IOUT}	rext = 1800Ω	片间	-	±3.5%	-	
OUT 端口输出端电流 2	lout2	V _{DS} = 1.0V	rext = 920Ω	-	17.9	-	mA
松山西次沿		V _{DS} = 1.0V	片内	-	±2.5%	-	
输出电流误差	D _{IOUT}	rext = 920Ω	片间	-	±3.5%	-	
输出电流误差N _{DS} 变化量	%/ΔV _{DS}	$V_{DS} = 1.0V \sim 3.0V$, $I_{OUT} = 17.9 \text{mA}$		-	1	-	%/V
输出电流误差/vpp 变化量	%/∆V _{DD}	$V_{DD} = 3.3V \sim 3.8V$, $I_{OUT} = 17.9$ mA		-	1	-	%/V
Pull-up 电阻	R _{OE} (up)		OE	-	250	-	ΚΩ
Pull-down 电阻	$R_{LE^{(down)}}$		LE	-	250	-	ΚΩ

电子邮件: market@chinaasic.com

Tel: 0755-26991392


Fax: 0755-26991336

网址: <u>www.chinaasic.com</u>

地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

直流特性测试电路

网址: <u>www.chinaasic.com</u>

地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

动态特性

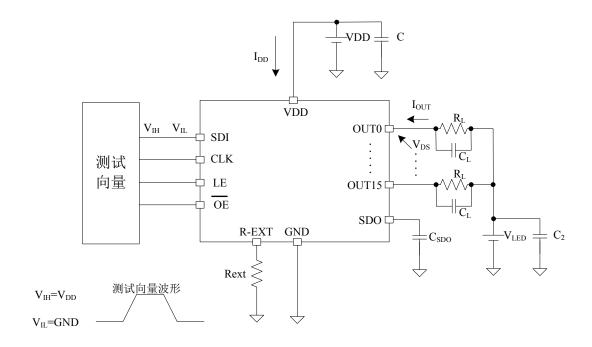
特	生	代表符	测量条件	最小值	一般值	最大值	单位
	CLK-OUT	t _{pLH1}			30		ns
延迟时间	LEOUT	t _{pLH2}			26		ns
(低电平到高电平)	OEOUT	t _{pLH3}	V _{IH} =VDD		30		ns
	CLK——SDO	t _{pLH}	V _{IL} =GND		28		ns
	CLK——OUT	t _{pHL1}	Rext=1800Ω		35		ns
延迟时间	LEOUT	t _{pHL2}	VDD=5.0V		33		ns
(高电平到低电平)	OEOUT	t _{pHL3}	R _L =400Ω		35		ns
	CLK——SDO	t _{pHL}	C _L =10pF		27		ns
电流输出上	升沿时间	tout-rise			30		ns
电流输出下	降沿时间	tout-fall			35		ns

(VDD= 3.3V, Ta = 25°C)

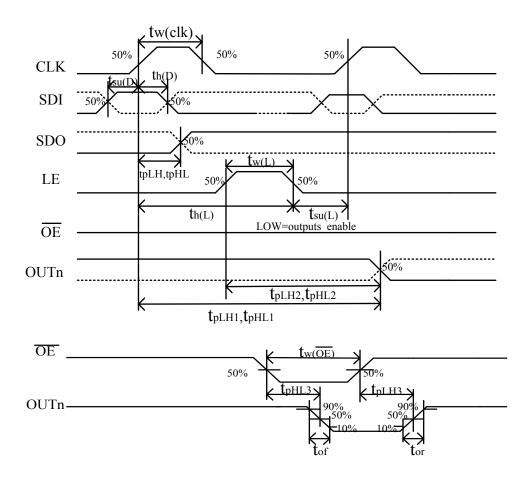
特	生	代表符	测量条件	最小值	一般值	最大值	单位
	CLK-OUT	t _{pLH1}			42		ns
延迟时间	LEOUT	t _{pLH2}		-	36		ns
(低电平到高电平)	OEOUT	t _{pLH3}	V _{IH} =VDD	1	45		ns
	CLK——SDO	t _{pLH}	V _{IL} =GND		30		ns
	CLK—OUT	t _{pHL1}	Rext=1800Ω	-	38		ns
延迟时间	LEOUT	t _{pHL2}	VDD=3.3V	1	33		ns
(高电平到低电平)	OEOUT	t _{pHL3}	R _L =200Ω	1	40		ns
	CLK——SDO	t_{pHL}	C _L =10pF	-	29		ns
电流输出上	1升沿时间	tout-rise		-	26		ns
电流输出下降沿时间		t out-fall			18		ns

电子邮件: market@chinaasic.com

Tel: 0755-26991392


Fax: 0755-26991336

网址: <u>www.chinaasic.com</u>


地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

动态特性测试电路

时序波形图

电子邮件: market@chinaasic.com

Tel: 0755-26991392

Fax: 0755-26991336

网址: www.chinaasic.com

地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

产品应用

SM16206 通道间以及芯片间的电流差异极小,此源自于 SM16206 优异的恒流输出特性:

- ◆ 片内通道间的最大电流误差小于±2.5%,而芯片间的最大电流误差小于±3.5%。
- ◆ 当负载端电压(Vos)变化时,其输出电流的稳定性不受影响,如下图所示。

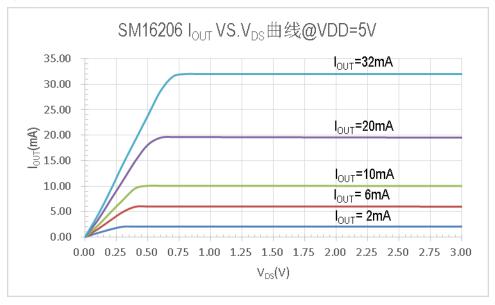


Fig. SM16206 lout 恒流特性曲线

注: 说明书更新版本请以公司网站公布为准

Fax: 0755-26991336

调整输出电流

如下图所示,由外接一个 rext 电阻调整输出电流 lour,套用下列公式可计算出输出电流值:

 I_{OUT} =16500/rext mA,

公式中的 rext 是指 R-EXT 端口对地的电阻值,电流单位是 mA。比如,当 rext = 750 Ω 时,通过公式计算可得输出电流值 22mA; 当 rext = 6000 Ω 时,输出电流值为 2.8mA。

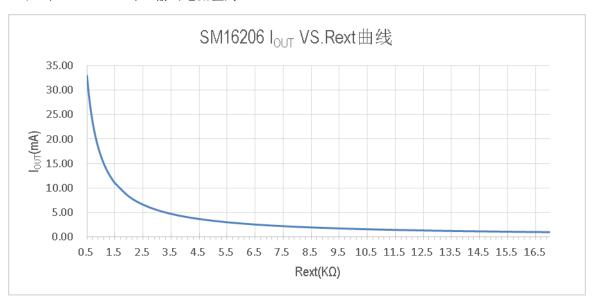


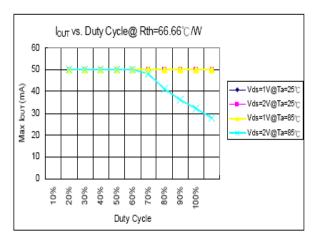
Fig. SM16206 lout 与 rext 电阻的关系曲线

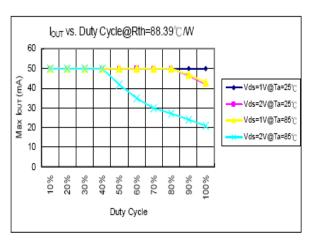
Fax: 0755-26991336

封装散热功率(PD)

封装的最大散热功率是由公式:

$$P_{D(max)} = \frac{(T_j - T_a)}{R_{th(j-a)}}$$
来决定的


当 16 个通道完全打开时,实际功耗为:


$$P_{D(act)}$$
=IDD*VDD+I_{OUT}*Duty*V_{DS}*16

实际功耗必须小于最大功耗,即 PD(act) < PD(max),为了保持 PD(act) < PD(max),输出的最大电流与占空比的关系为:

$$I_{out} = \frac{\frac{T_j - T_a}{R_{th(j-a)}} - IDD * VDD}{V_{DS} * Duty * 16}$$

其中 T_j 为 IC 的工作温度, T_a 为环境温度, V_{DS} 为稳流输出端口电压,Duty 为占空比, $R_{th (j-a)}$ 为封装的热阻。下图为最大输出电流与占空比的关系:

如果需要更大的输出电流 lour,则需要加一定的散热片,其计算公式为:

由
$$\frac{1}{R_{\text{th(j-a)}}} + \frac{1}{R_{\text{fc}}} = \frac{P_{D \text{ (act)}}}{T_{\text{j-}}T_{a}}$$
 得:

$$R_{fc} = \frac{R_{th(j-a)} * (T_{j}-T_{a})}{P_{D(act)} * R_{th(j-a)}-T_{j}+T_{a}}$$

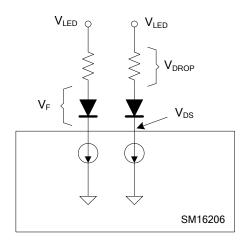
其中 P_{D(act)}=IDD*VDD+I_{OUT}*Duty*V_{DS}*16

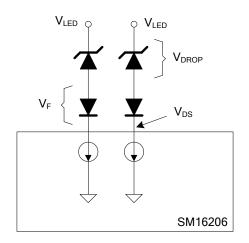
因此如果要输出更大的电流 lour,由上面公式可以计算出必须给 IC 加热阻为 R_{fc} 的散热片。

电子邮件: market@chinaasic.com

Tel: 0755-26991392

Fax: 0755-26991336


网址: www.chinaasic.com


地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

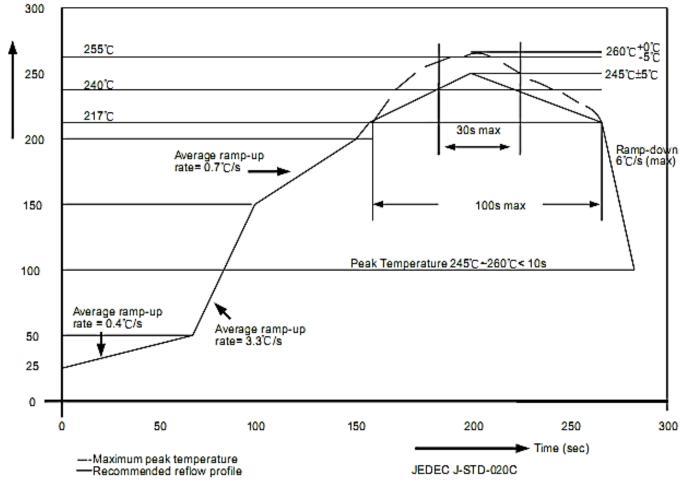
负载端电压(VLED)

为使封装体散热能力达到最佳化,建议输出端电压(V_{DS})的最佳工作范围是 1.0V 左右(依据 I_{OUT} = 1mA \sim 32mA)。 如果 V_{DS} = V_{LED} - V_F 且 V_{LED} =5.0V 时,此时过高的输出端电压(V_{DS})可能会导致 P_D (act) > P_D (max)。在此状况,建议尽可能使用较低的 V_{LED} 电压供应,也可用外串电阻或稳压管当做 V_{Drop} ,此可导致 V_{DS} =(V_{LED} - V_F)- V_{DROP} ,达到降低输出端电压(V_{DS})的效果。

电子邮件: market@chinaasic.com

网址: <u>www.chinaasic.com</u>

地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层


注: 说明书更新版本请以公司网站公布为准

封装焊接制程

明微电子所生产的半导体产品遵循欧洲 RoHs 标准, 封装焊接制程锡炉温度符合 J-STD-020 标准。

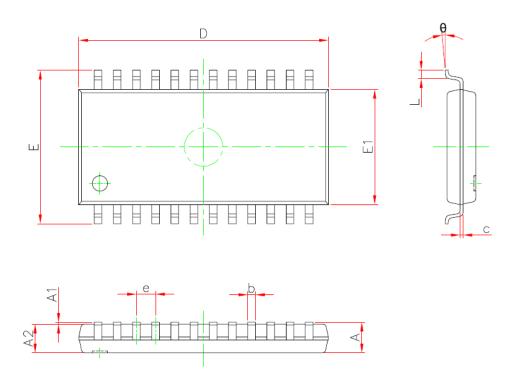
Temperature (°C)

封装厚度	体积	体积	体积
到 <i>妆序</i> 及	mm ³ < 350	mm³: 350~2000	mm³≥ 2000
<1.6mm	260+0℃	260+0℃	260+0℃
1.6mm~2.5mm	260+0℃	250+0℃	245+0℃
≥2.5mm	250+0℃	245+0℃	245+0℃

电子邮件: market@chinaasic.com

Tel: 0755-26991392

Fax: 0755-26991336


网址: www.chinaasic.com

地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

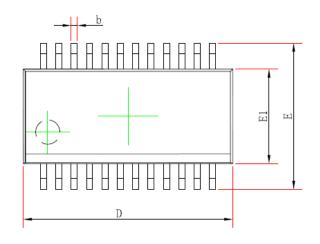
封装形式

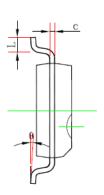
SSOP24

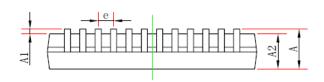
Symbol	Min(mm)	Max(mm)	
A	-	2.15	
A1	0.05	0.35	
A2	1.2	1.9	
b	0.15	0.75	
С	0.05	0.45	
D	12.6	13.5	
Е	7.6	8.5	
E1	5.6	6.5	
е	1.0TYP		
L	0.2	1.0	
θ	0° 10°		

电子邮件: market@chinaasic.com

Tel: 0755-26991392


Fax: 0755-26991336


网址: <u>www.chinaasic.com</u>

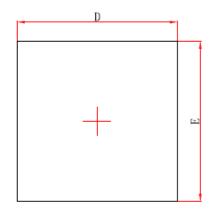

地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

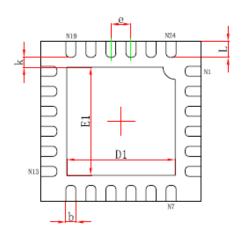
QSOP24

Symbol	Min(mm)	Max(mm)	
A	-	1.95	
A1	0.05	0.35	
A2	1.05	-	
b	0.1	0.4	
С	0.05	0.254	
D	8.2	9.2	
E1	3.6	4.2	
E	5.6	6.5	
е	0.635TYP		
L	0.3	1.5	
θ	0°	10°	

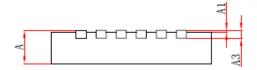
电子邮件: market@chinaasic.com

Tel: 0755-26991392


Fax: 0755-26991336


网址: <u>www.chinaasic.com</u>

地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层


QFN24(4*4)

Top Vlew

Side View

Symbol	Min(mm)	Max(mm)
А	0.6	1.0
A1	-	0.1
A3	0.203REF	
D	3.8	4.3
Е	3.8	4.3
D1	2.4	3.0
E1	2.4	3.0
K	0.2min	
е	0.5TYP	
b	0.1	0.4
L	0.2	0.7

电子邮件: market@chinaasic.com

Tel: 0755-26991392

Fax: 0755-26991336

网址: <u>www.chinaasic.com</u>

地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

使用权声明

明微电子对于产品、文件以及服务保有一切变更、修正、修改、改善和终止的权利。针对上述的权利,客户在进行产品购买前,建议与明微电子业务代表联系以取得最新的产品信息。

明微电子的产品,除非经过明微合法授权,否则不应使用于医疗或军事行为上,若使用者因此导致任何身体伤害或生命威胁甚至死亡,明微电子将不负任何损害赔偿责任。

此份文件上所有的文字内容、图片、及商标为明微电子所属之智慧财产。未经明微合法授权,任何个人和组织不得擅自使用、修改、重制、公开、改作、散布、发行、公开发表等损害本企业合法权益。对于相关侵权行为,本企业将立即全面启动法律程序,追究法律责任。

电子邮件: market@chinaasic.com

网址: <u>www.chinaasic.com</u>

地址: 深圳市南山区高新技术产业园南区高新南一道 015 号国微研发大楼三层

注: 说明书更新版本请以公司网站公布为准