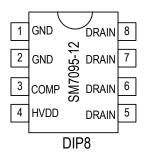
SM7095-12

特点

- ◆ 支持 BUCK 或 BUCK-BOOST
- ◆ 采用 700V 单芯片集成工艺
- ◆ 85Vac~265Vac 宽电压输入
- ◆ 待机功耗小于 120mW@220Vac
- ◆ 集成高压启动电路
- ◆ 集成高压功率开关
- ◆ 内置抖频技术,提升 EMC 性能
- ◆ 电流模式 PWM 控制方式
- ◆ 内置过温、过流、过压、欠压等 保护功能
- ◆ 内置软启动
- ◆ 内置智能软驱动技术(提高 EMC 性能)
- ◆ 封装形式: DIP8

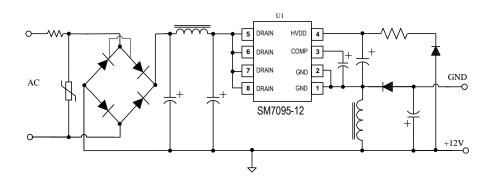
应用领域


- ◆ 电磁炉、电饭煲、电压力锅等小 家电产品电源
- ◆ 12V 输出供电电源

概述

SM7095-12 是采用电流模式 PWM 控制方式的功率开关芯片,集成 高压启动电路和高压功率管,为低成本开关电源系统提供高性价比的 解决方案。

芯片应用于 BUCK 或 BUCK-BOOST 系统方案,支持 12V 输出电压,很方便的应用于小家电产品领域,并提供过温、过流、过压、欠压等完善的保护功能,保证了系统的可靠性。


管脚图

输出功率表

输入电压	最大电流
85Vac~265Vac	500mA
180Vac~265Vac	600mA

典型示意电路图

管脚说明

名称	管脚序列	管脚说明	
GND	1,2	芯片地	
COMP	3	芯片补偿脚	
HVDD	4	芯片电源端	
DRAIN	5,6,7,8	内置高压 MOS 管的 DRAIN,同时芯片启动时,也做芯片的启动脚	

订购信息

订购型号	封装形式	包装方式		- 卷盘尺寸	
7 购至 5	到表形式	管装	编带	仓益 /()	
SM7095-12	DIP8	20000 只/箱	1	1	

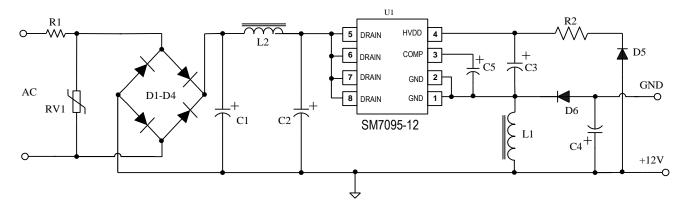
极限参数

极限参数(TA= 25℃)

符号	说明	范围	单位
V _{DS(max)}	芯片 DRAIN 脚最高耐压	-0.3~700	V
V _{DS(ST)}	芯片启动时,DRAIN 脚最高耐压	-0.3~700	V
HVDD	芯片电源电压	-0.3~20	V
COMP	芯片补偿脚	-0.3~7.0	V
Ihvdd	嵌位电流	10	mA
TJ	结温	-40∼125	$^{\circ}$
T _{STG}	存储温度	- 50∼150	$^{\circ}$
V _{ESD}	HBM 人体放电模式	>2	KV

热阻参数

符号	说明	范围	单位
R _{thJA}	热阻(1)	65	°C/W


注(1): 芯片要焊接在有 200mm² 铜箔散热的 PCB 板,铜箔厚度 35um,铜箔连接到所有的 GND 脚。

电气工作参数

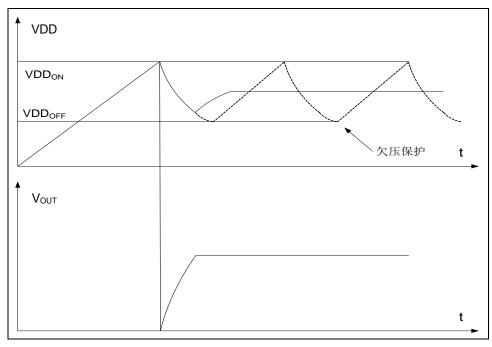
(除非特殊说明,下列条件均为 T_A=25℃)

/s/s 🖂	2H HH	D III	范围			
符号	说明	条件	最小	典型	最大	单位
BV _{DS}	漏源击穿电压	-	700	-	-	٧
IDSS	DRAIN 端关断态漏电流	-	-	-	0.1	mA
HVDDon	HVDD 开启电压	-	-	11.5	-	٧
HVDDoff	HVDD 关闭电压	-	-	8	-	V
HVDD _{HYS}	HVDD 迟滞阈值电压	-	-	3.5	-	V
I _{DD2}	HVDD 工作电流	-	-	0.5	-	mA
HVDDsense	HVDD 采样电压	-	-	12	-	V
Ідден	芯片充电电流	V _{DS} =100V; HVDD=5V	-	-500	-	uA
Fosc	芯片振荡频率	-	-	45		KHz
△Fosc	抖频范围	-	-	4	-	%
Tovt	过温保护温度	-	-	150	-	$^{\circ}$

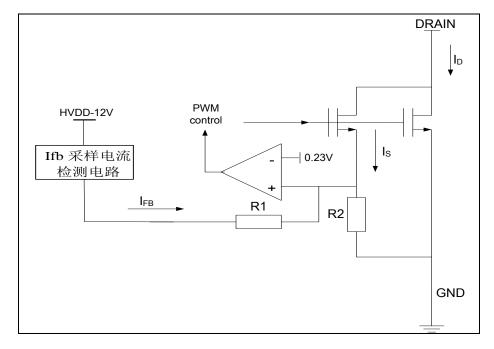
功能表述

◆ 电路图说明

上图为典型的 BUCK-BOOST 电路,其中 C1、C2、L1 组成 π 型滤波,有益于改善 EMI 特性,R1 电阻为浪涌 抑制元件,D1-D4 为整流二极管,构成全桥整流电路。


输出部分 L2 为储能电感, D5 为 HVDD 供电二极管, D6 为续流二极管, 在芯片关断期间提供输出电流通路:

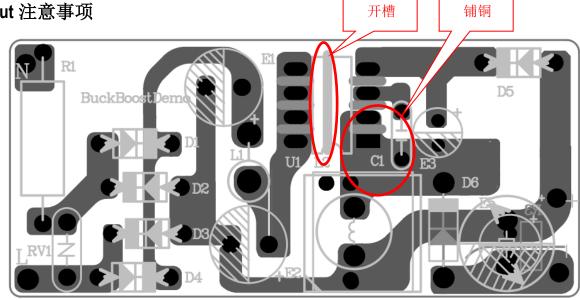
$$V_{OUT} = V_{HVDD} + V_{FD5} - V_{FD6} \approx V_{HVDD}$$


◆ HVDD 电压

当开关电源启动后, C2 电容上的电压会通过芯片内部的高压启动 MOS 管向芯片 HVDD 电容 C3 充电,当 C3 电容电压达到 11.5V,内部高压启动 MOS 管关闭,同时 PWM 开启,系统开始工作。

当 C3 电容电压下降到 9V 以下,关闭 PWM 信号,同时芯片将会产生复位信号,使系统重新启动。这就是欠压保护。

◆ 控制部分


通过高压 MOS 的电流 I_D 分成两个部分,其中一部分为 I_S ,这部分电流为芯片采样电流。 I_S 与 I_D 成比例关系: $I_D = G_{ID} \bullet I_S$

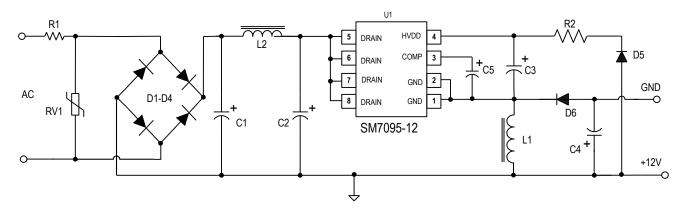
通过上图可知:
$$(I_S+I_{FB}) \bullet R2 = 0.23V$$
, 由此可以得到: $I_S = \frac{0.23V}{R2} - I_{FB}$

以上公式合并,可得到:
$$I_D = G_{ID} \cdot (\frac{0.23V}{R2} - I_{FB})$$

从上式可以看出,IFB 电流大,ID 的电流就小; IFB 电流小,ID 的电流就大。当 IFB 的电流大于(0.23V / R2)时,芯片会关闭 PWM,同时芯片会自动进入突发模式。

PCB layout 注意事项

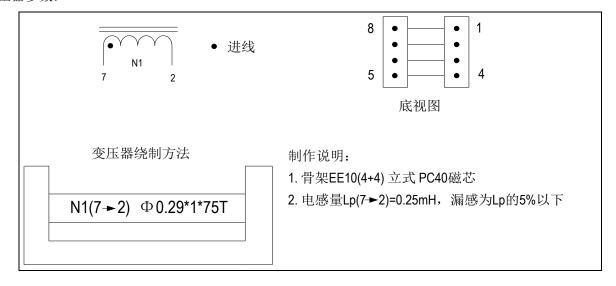
DIP8 封装芯片


简要说明:

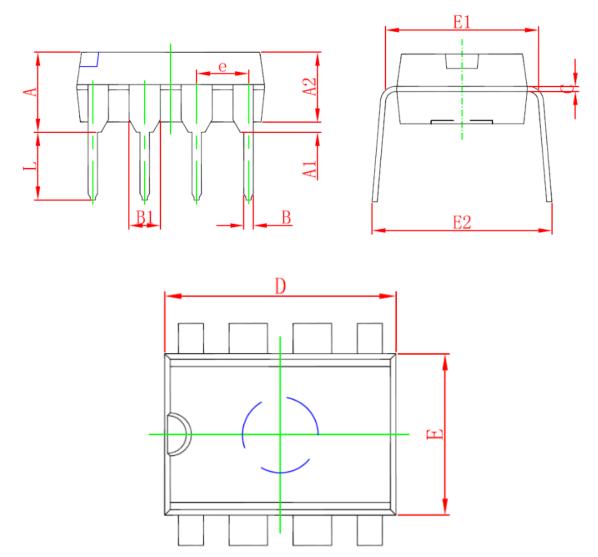
DIP8

在 IC 的 DRAIN 脚与 GND 及 VDD 之间开槽,以便进一步增加安规距离。 初级环路与次级环路的走线距离尽量粗而短,以便更容易通过 EMC 测试。 高压信号与低压信号分开走线,避免高压信号对低压反馈信号产生干扰。 IC 的 1、2 脚 GND 需要铺铜处理,铺铜面积建议大于 8*8mm,以降低芯片的温度。

典型应用方案


原理图:

BOM 清单:


114 1 1			
位号	参数	位号	参数
D1-D4	IN4007	RV1	10D471
D5	FR107	R1	10R/2W
D6	ES2J	R2	10R/0.25W
C1、C2	4.7uF/400V	L1	EE10(4+4)立式
C3	4.7uF/50V	L2	1mH
C4	470uF/25V	U1	SM7095-12
C5	33nF/16V	-	-

变压器参数:

封装形式

DIP8

Symbol	Min(mm)	Max(mm)
A	-	4.8
A1	0.5	-
A2	3.0	3.7
В	0.3	0.6
B1	1.524	(BSC)
С	0.2	0.4
D	9.1	9.5
E	6.15	6.45
E1	7.2	8.4
е	2.54(BSC)
L	2.8	4.0
E2	8.8(1	BSC)