ATtiny20

Atmel

8-bit AVR Microcontroller with 2K Bytes In-System Programmable Flash

DATASHEET SUMMARY

Features

- High performance, low power 8-bit AVR® microcontroller
- Advanced RISC architecture
 - 112 powerful instructions most single clock cycle execution
 - 16 x 8 general purpose working registers
 - Fully static operation
 - Up to 12 MIPS throughput at 12MHz
- Non-volatile program and data memories
 - 2K bytes of in-system programmable flash program memory
 - 128 bytes internal SRAM
 - Flash write/erase cycles: 10,000
 - Data retention: 20 years at 85°C / 100 years at 25°C
- Peripheral features
 - One 8-bit timer/counter with two PWM channels
 - One 16-bit timer/counter with two PWM channels
 - 10-bit analog to digital converter
 - 8 single-ended channels
 - Programmable watchdog timer with separate on-chip oscillator
 - On-chip analog comparator
 - Master/slave SPI serial interface
 - Slave TWI serial interface
- Special microcontroller features
 - In-system programmable
 - External and internal interrupt sources
 - Low power idle, ADC noise reduction, stand-by and power-down modes
 - Enhanced power-on reset circuit
 - Internal calibrated oscillator
- I/O and packages
 - 14-pin SOIC/TSSOP: 12 programmable I/O lines
 - 12-ball WLCSP: 10 programmable I/O lines
 - 15-ball UFBGA: 12 programmable I/O lines
 - 20-pad VQFN: 12 programmable I/O lines
- Operating voltage:
 - 1.8 5.5V
- Programming voltage:
- 5V
- Speed grade
 - 0 4MHz @ 1.8 5.5V
 - 0 8MHz @ 2.7 5.5V
 - 0 12MHz @ 4.5 5.5V
 - Industrial temperature range
- Low power consumption
 - Active mode:
 - 200 µA at 1MHz and 1.8V
 - Idle mode:
 - 25µA at 1MHz and 1.8V
 - Power-down mode:
 - < 0.1µA at 1.8V</p>

1. Pin Configurations

1.1 SOIC & TSSOP

Figure 1-1. SOIC/TSSOP

1.2 VQFN

1.3 UFBGA

Figure 1-3. UFBGA

Table 1-1. UFBGA Pin Configuration

	1	2	3	4
А		PA5	PA6	PB2
В	PA4	PA7	PB1	PB3
С	PA3	PA2	PA1	PB0
D	PA0	GND	GND	VCC

1.4 Wafer Level Chip Scale Package

Figure 1-4. WLCSP

Table 1-2. WLCSP Ball Configuration

	1	2	3	4	5	6
Α	PA4		PA1		PA2	
В		PA6		GND		VDD
С	PA5		PA7		PB1	
D		PB2		PB3		PB0

1.5 Pin Description

1.5.1 VCC

Supply voltage.

1.5.2 GND

Ground.

1.5.3 **RESET**

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running and provided the reset pin has not been disabled. The minimum pulse length is given in Table 20-4 on page 170. Shorter pulses are not guaranteed to generate a reset.

The reset pin can also be used as a (weak) I/O pin.

1.5.4 Port A (PA7:PA0)

Port A is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port A has alternate functions as analog inputs for the ADC, analog comparator and pin change interrupt as described in "Alternate Port Functions" on page 47.

1.5.5 Port B (PB3:PB0)

Port B is a 4-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability except PB3 which has the RESET capability. To use pin PB3 as an I/O pin, instead of RESET pin, program ('0') RSTDISBL fuse. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

The port also serves the functions of various special features of the ATtiny20, as listed on page 37.

2. Overview

ATtiny20 is a low-power CMOS 8-bit microcontroller based on the compact AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny20 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

Figure 2-1. Block Diagram

Atmel

The AVR core combines a rich instruction set with 16 general purpose working registers and system registers. All registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is compact and code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

ATtiny20 provides the following features:

- 2K bytes of in-system programmable Flash
- 128 bytes of SRAM
- Twelve general purpose I/O lines
- 16 general purpose working registers
- An 8-bit Timer/Counter with two PWM channels
- A 16-bit Timer/Counter with two PWM channels
- Internal and external interrupts
- An eight-channel, 10-bit ADC
- A programmable Watchdog Timer with internal oscillator
- A slave two-wire interface
- A master/slave serial peripheral interface
- An internal calibrated oscillator
- Four software selectable power saving modes

The device includes the following modes for saving power:

- Idle mode: stops the CPU while allowing the timer/counter, ADC, analog comparator, SPI, TWI, and interrupt system to continue functioning
- ADC Noise Reduction mode: minimizes switching noise during ADC conversions by stopping the CPU and all I/O modules except the ADC
- Power-down mode: registers keep their contents and all chip functions are disabled until the next interrupt or hardware reset
- Standby mode: the oscillator is running while the rest of the device is sleeping, allowing very fast start-up combined with low power consumption.

The device is manufactured using Atmel's high density non-volatile memory technology. The on-chip, in-system programmable Flash allows program memory to be re-programmed in-system by a conventional, non-volatile memory programmer.

The ATtiny20 AVR is supported by a suite of program and system development tools, including macro assemblers and evaluation kits.

3. General Information

3.1 Resources

A comprehensive set of drivers, application notes, data sheets and descriptions on development tools are available for download at http://www.atmel.com/avr.

3.2 Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.

3.3 Capacitive Touch Sensing

Atmel QTouch Library provides a simple to use solution for touch sensitive interfaces on Atmel AVR microcontrollers. The QTouch Library includes support for QTouch[®] and QMatrix[®] acquisition methods.

Touch sensing is easily added to any application by linking the QTouch Library and using the Application Programming Interface (API) of the library to define the touch channels and sensors. The application then calls the API to retrieve channel information and determine the state of the touch sensor.

The QTouch Library is free and can be downloaded from the Atmel website. For more information and details of implementation, refer to the QTouch Library User Guide – also available from the Atmel website.

3.4 Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C.

3.5 Disclaimer

Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology.

4. Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x3F	SREG		Т	Н	S	V	N	Z	С	Page 14
0x3E	SPH					er High Byte				Page 13
0x3D	SPL					ter Low Byte				Page 13
0x3C 0x3B	CCP RSTFLR	_	_	_	CPU Change	Protection Byte WDRF	BORF	EXTRF	PORF	Page 13 Page 35
0x3A	MCUCR	ICSC01	ICSC00	-	BODS	SM2	SM1	SM0	SE	Pages 26, 38
0x39	OSCCAL	100001	100000	_		libration Byte	OWIT	ONIO		Page 22
0x38	Reserved	_	-	-	-	_	_	_	- 1	1 490 22
0x37	CLKMSR	-	-	-	_	-	-	CLKMS1	CLKMS0	Page 20
0x36	CLKPSR	-	- 1	-	-	CLKPS3	CLKPS2	CLKPS1	CLKPS0	Page 21
0x35	PRR	-	-	-	PRTWI	PRSPI	PRTIM1	PRTIM0	PRADC	Page 27
0x34	QTCSR			Q	Touch Control a	ind Status Regis	ter			Page 7
0x33	NVMCMD		-	ļ		NVM Co	mmand		,	Page 166
0x32	NVMCSR	NVMBSY	-	-	-	-	-	-	-	Page 166
0x31	WDTCSR	WDIF	WDIE	WDP3	-	WDE	WDP2	WDP1	WDP0	Page 33
0x30	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	Page 132
0x2F	SPSR	SPIF	WCOL	-	-	-	-	SSPS	SPI2X	Page 133
0x2E	SPDR	THIOLIE	· · · · · ·	THE	1	Register	THYOIF	TIACONAE	THIONAE	Page 134
0x2D 0x2C	TWSCRA	TWSHE	-	TWDIE	TWASIE	TWEN	TWSIE	TWPME	TWSME	Page 143
0x2B	TWSCRB TWSSRA	– TWDIF	– TWASIF	– түсн	– TWRA	- TWC	TWAA TWBE	TWDIR	ID[1.0] TWAS	Page 144 Page 145
0x2B	TWSA	TWDII	TWASI	TWCH		dress Register	TWBL	TWDIK	TWAS	Page 145
0x29	TWSA					ess Mask Register	۶r			Page 140
0x28	TWSD					Data Register				Page 146
0x27	GTCCR	TSM	-	_	_	_	_	_	PSR	Page 104
0x26	TIMSK	ICE1	-	OCIE1B	OCIE1A	TOIE1	OCIE0B	OCIE0A	TOIE0	Pages 74, 101
0x25	TIFR	ICF1	-	OCF1B	OCF1A	TOV1	OCF0B	OCF0A	TOV0	Pages 75, 102
0x24	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	-	_	WGM11	WGM10	Page 96
0x23	TCCR1B	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	Page 98
0x22	TCCR1C	FOC1A	FOC1B	-	_	-	_	-		Page 100
0x21	TCNT1H			Timer/	Counter1 – Cou	nter Register Hig	jh Byte			Page 100
0x20	TCNT1L					inter Register Lo				Page 100
0x1F	OCR1AH					are Register A F				Page 100
0x1E	OCR1AL					bare Register A L				Page 100
0x1D	OCR1BH					are Register B H	- <u>2</u>			Page 101
0x1C 0x1B	OCR1BL ICR1H					oare Register B L				Page 101
0x1A	ICR1L					apture Register				Page 101 Page 101
0x19	TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0			WGM01	WGM00	Page 69
0x18	TCCR0B	FOC0A	FOC0B	-	-	WGM02	CS02	CS01	CS00	Page 72
0x17	TCNT0			т	imer/Counter0 -	- Counter Regist				Page 73
0x16	OCR0A					Compare Registe			ĺ	Page 74
0x15	OCR0B		-	Tin	ner/Counter0 – 0	Compare Registe	er B	_		Page 74
0x14	ACSRA	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	Page 106
0x13	ACSRB	HSEL	HLEV	ACLP	-	ACCE	ACME	ACIRS1	ACIRS0	Page 107
0x12	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	Page 122
0x11	ADCSRB	VDEN	VDPD	-	-	ADLAR	ADTS2	ADTS1	ADTS0	Page 123
0x10	ADMUX	-	REFS	REFEN	ADC0EN	MUX3	MUX2	MUX1	MUX0	Page 120
0x0F	ADCH					Result – High By				Page 121
0x0E	ADCL	40070	40000			Result – Low By		40010	40000	Page 121
0x0D	DIDRO	ADC7D	ADC6D	ADC5D	ADC4D	ADC3D	ADC2D	ADC1D	ADCOD	Page 124
0x0C 0x0B	GIMSK	-	-	PCIE1 PCIF1	PCIE0 PCIF0	-			INT0 INTF0	Page 39 Page 40
0x0B	PCMSK1	_		PCIF1	PCIFU -	PCINT11	PCINT10	PCINT9	PCINT8	Page 40 Page 40
0x09	PCMSK0	PCINT7	PCINT6	PCINT5	PCINT4	PCINT1 PCINT3	PCINT10 PCINT2	PCINT9 PCINT1	PCINT8 PCINT0	Page 40
0x08	PORTCR		-	-		-	-	BBMB	BBMA	Page 56
0x07	PUEB	-	-	-	-	PUEB3	PUEB2	PUEB1	PUEB0	Page 57
0x06	PORTB	_	-	-	_	PORTB3	PORTB2	PORTB1	PORTB0	Page 57
0x05	DDRB	-	-	-	-	DDRB3	DDRB2	DDRB1	DDRB0	Page 57
0x04	PINB	-	-	-	-	PINB3	PINB2	PINB1	PINB0	Page 58
0x03	PUEA	PUEA7	PUEA6	PUEA5	PUEA4	PUEA3	PUEA2	PUEA1	PUEA0	Page 57
0x02	PORTA	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	Page 57
0x01	DDRA	DDRA7	DDRA6	DDRA5	DDRA4	DDRA3	DDRA2	DDRA1	DDRA0	Page 57
		PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	Page 57

- Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
 - 2. I/O Registers within the address range 0x00 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
 - 3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operation the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.

5. Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC AND	LOGIC INSTRUCTIO	NS			
ADD	Rd, Rr	Add without Carry	Rd ← Rd + Rr	Z,C,N,V,S,H	1
ADC	Rd, Rr	Add with Carry	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,S,H	1
SUB	Rd, Rr	Subtract without Carry	Rd ← Rd - Rr	Z,C,N,V,S,H	1
SUBI	Rd, K	Subtract Immediate	$Rd \leftarrow Rd - K$	Z,C,N,V,S,H	1
SBC	Rd, Rr	Subtract with Carry	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,S,H	1
SBCI	Rd, K	Subtract Immediate with Carry	$Rd \leftarrow Rd - K - C$	Z,C,N,V,S,H	1
AND	Rd, Rr	Logical AND	Rd ← Rd • Rr	Z,N,V,S	1
ANDI	Rd, K	Logical AND with Immediate	$Rd \leftarrow Rd \bullet K$	Z,N,V,S	1
OR	Rd, Rr	Logical OR	Rd ← Rd v Rr	Z,N,V,S	1
ORI	Rd, K	Logical OR with Immediate	$Rd \leftarrow Rd \vee K$	Z,N,V,S	1
EOR	Rd, Rr	Exclusive OR	$Rd \leftarrow Rd \oplus Rr$	Z,N,V,S	1
COM	Rd	One's Complement	Rd ← \$FF – Rd	Z,C,N,V,S	1
NEG	Rd	Two's Complement	Rd ← \$00 – Rd	Z,C,N,V,S,H	1
SBR	Rd,K	Set Bit(s) in Register	Rd ← Rd v K	Z,N,V,S	1
CBR	Rd,K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (\$FFh - K)$	Z,N,V,S	1
INC	Rd	Increment	$Rd \leftarrow Rd + 1$	Z,N,V,S	1
DEC	Rd	Decrement	$Rd \leftarrow Rd - 1$	Z,N,V,S	1
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \bullet Rd$	Z,N,V,S	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V,S	1
SER	Rd	Set Register	Rd ← \$FF	None	1
BRANCH INSTRUC	TIONS				
RJMP	k	Relative Jump	$PC \leftarrow PC + k + 1$	None	2
IJMP		Indirect Jump to (Z)	$PC(15:0) \leftarrow Z, PC(21:16) \leftarrow 0$	None	2
RCALL	k	Relative Subroutine Call	$PC \leftarrow PC + k + 1$	None	3/4
ICALL		Indirect Call to (Z)	$PC(15:0) \leftarrow Z, PC(21:16) \leftarrow 0$	None	3/4
RET		Subroutine Return	PC ← STACK	None	4/5
RETI		Interrupt Return	$PC \leftarrow STACK$	1	4/5
CPSE	Rd,Rr	Compare, Skip if Equal	if (Rd = Rr) PC \leftarrow PC + 2 or 3	None	1/2/3
CP	Rd,Rr	Compare	Rd – Rr	Z, C,N,V,S,H	1
CPC	Rd,Rr	Compare with Carry	Rd – Rr – C	Z, C,N,V,S,H	1
CPI	Rd,K	Compare with Immediate	Rd – K	Z, C,N,V,S,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if (Rr(b)=1) PC ← PC + 2 or 3	None	1/2/3
SBIC	A, b	Skip if Bit in I/O Register Cleared	if (I/O(A,b)=0) PC ← PC + 2 or 3	None	1/2/3
SBIS	A, b	Skip if Bit in I/O Register is Set	if (I/O(A,b)=1) PC ← PC + 2 or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then $PC \leftarrow PC+k + 1$	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then $PC \leftarrow PC+k + 1$	None	1/2
BREQ	k	Branch if Egual	if (Z = 1) then PC \leftarrow PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if (Z = 0) then PC \leftarrow PC + k + 1	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC \leftarrow PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC \leftarrow PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if (N \oplus V= 0) then PC \leftarrow PC + k + 1	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if $(N \oplus V= 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC \leftarrow PC + k + 1	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC \leftarrow PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC \leftarrow PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if (T = 0) then PC \leftarrow PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC \leftarrow PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC \leftarrow PC + k + 1	None	1/2
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC \leftarrow PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC \leftarrow PC + k + 1	None	1/2
BIT AND BIT-TEST					
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V,H	1
LSR	Rd	Logical Shift Left	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V,I1	1
ROL	Rd	Rotate Left Through Carry	$Rd(n) \leftarrow Rd(n+1), Rd(r) \leftarrow 0$ $Rd(0) \leftarrow C, Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)$	Z,C,N,V,H	1
ROR	Rd	÷ ·		Z,C,N,V,H Z,C,N,V	1
	1	Rotate Right Through Carry	$Rd(7) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$		
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	$Rd(30) \leftarrow Rd(74), Rd(74) \leftarrow Rd(30)$	None SREC(a)	1
BSET	s	Flag Set Flag Clear	SREG(s) $\leftarrow 1$	SREG(s)	1
BCLR			$SREG(s) \leftarrow 0$	SREG(s)	1

Mnemonics	Operands	Description	Operation	Flags	#Clocks
SBI	A, b	Set Bit in I/O Register	I/O(A, b) ← 1	None	1
CBI	A, b	Clear Bit in I/O Register	I/O(A, b) ← 0	None	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	Т	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	C ← 0	С	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	← 1	1	1
CLI		Global Interrupt Disable	1 ← 0	1	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Two's Complement Overflow.	V ← 1	V	1
CLV		Clear Two's Complement Overflow	V ← 0	V	1
SET		Set T in SREG	T ← 1	 Т	1
CLT		Clear T in SREG	T ← 0	т	1
				Н	-
SEH CLH		Set Half Carry Flag in SREG Clear Half Carry Flag in SREG	$\begin{array}{c c} H \leftarrow 1 \\ H \leftarrow 0 \end{array}$	H	1
	INSTRUCTIONS				
DATA TRANSFER		O anti- Da ristar		News	1
MOV	Rd, Rr	Copy Register	Rd ← Rr	None	-
LDI	Rd, K	Load Immediate	Rd ← K	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	1/2
LD	Rd, X+	Load Indirect and Post-Increment	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Decrement	$X \leftarrow X - 1, Rd \leftarrow (X)$	None	2/3
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	1/2
LD	Rd, Y+	Load Indirect and Post-Increment	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Decrement	$Y \leftarrow Y - 1, Rd \leftarrow (Y)$	None	2/3
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	1/2
LD	Rd, Z+	Load Indirect and Post-Increment	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Decrement	$Z \leftarrow Z - 1, Rd \leftarrow (Z)$	None	2/3
LDS	Rd, k	Store Direct from SRAM	$Rd \leftarrow (k)$	None	1
ST	X, Rr	Store Indirect	$(X) \leftarrow Rr$	None	1
ST	X+, Rr	Store Indirect and Post-Increment	$(X) \leftarrow \operatorname{Rr}, X \leftarrow X + 1$	None	1
ST	- X, Rr	Store Indirect and Pre-Decrement	$X \leftarrow X - 1, (X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	(Y) ← Rr	None	1
ST	Y+, Rr	Store Indirect and Post-Increment	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	1
ST	- Y, Rr	Store Indirect and Pre-Decrement	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None	2
ST	Z, Rr	Store Indirect	$(Z) \leftarrow Rr$	None	1
ST	Z+, Rr	Store Indirect and Post-Increment.	(Z) ← Rr, Z ← Z + 1	None	1
ST	-Z, Rr	Store Indirect and Pre-Decrement	$Z \leftarrow Z - 1, (Z) \leftarrow Rr$	None	2
STS	k, Rr	Store Direct to SRAM	(k) ← Rr	None	1
IN	Rd, A	In from I/O Location	$Rd \leftarrow I/O(A)$	None	1
OUT	A, Rr	Out to I/O Location	I/O (A) ← Rr	None	1
PUSH	Rr	Push Register on Stack	STACK ← Rr	None	2
POP	Rd	Pop Register from Stack	Rd ← STACK	None	2
MCU CONTROL IN					
BREAK		Break	(see specific descr. for Break)	None	1
NOP		No Operation		None	1
SLEEP	1	Sleep	(see specific descr. for Sleep)	None	1
WDR	+	Watchdog Reset	(see specific descr. for WDR)	None	1

6. Ordering Information

6.1 ATtiny20

Speed	Supply Voltage	Temperature Range	Package ⁽²⁾	Ordering Code ⁽¹⁾	
	1.8 – 5.5V	Industrial (-40°C to +85°C) ⁽⁴⁾		12U-1	ATtiny20-UUR
			14S1	ATtiny20-SSU	
				ATtiny20-SSUR	
			14X	ATtiny20-XU	
12 MHz			147	ATtiny20-XUR	
			15CC1	ATtiny20-CCU	
			15001	ATtiny20-CCUR	
			20M2	ATtiny20-MMH ⁽³⁾	
			ZOIVIZ	ATtiny20-MMHR ⁽³⁾	

Notes: 1. Code indicators:

- H: NiPdAu lead finish
- U: matte tin
- R: tape & reel
- 2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS).
- 3. Topside marking for ATtiny20:
 - 1st Line: T20
 - 2nd & 3rd Line: manufacturing data
- 4. These devices can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

	Package Type
12U-1	12-ball 1.540 x 1.388mm Body, 0.433 mm thick, 0.40 mm Pitch (3x4 Staggered Array), WLCSP
14S1	14-lead, 0.150" Wide Body, Plastic Gull Wing Small Outline Package (SOIC)
14X	14-lead, 4.4 mm Body, Thin Shrink Small Outline Package (TSSOP)
15CC1	15-ball (4 x 4 Array), 0.65 mm Pitch, 3.0 x 3.0 x 0.6 mm, Ultra Thin Fine-Pitch Ball Grid Array Package (UFBGA)
20M2	20-pad, 3 x 3 x 0.85 mm Body, Very Thin Quad Flat No Lead Package (VQFN)

7. **Packaging Information**

7.3 14X

Atmel

7.4 15CC1

Atmel

8. Errata

The revision letters in this section refer to the revision of the corresponding ATtiny20 device.

8.1 Rev. A

Issue:	Lock bits re-programming
Resolution:	Attempt to re-program Lock bits to present, or lower protection level (tampering attempt), causes erroneously one, random line of Flash program memory to get erased. The Lock bits will not get changed, as they should not.
Workaround:	Do not attempt to re-program Lock bits to present, or lower protection level.
Issue:	MISO output driver is not disabled by Slave Select (\overline{SS}) signal
Issue: Resolution:	MISO output driver is not disabled by Slave Select (\overline{SS}) signal When SPI is configured as a slave and the MISO pin is configured as an output the pin output driver is constantly enabled, even when the \overline{SS} pin is high. If other slave devices are connected to the same MISO line this behaviour may cause drive contention.

9. Datasheet Revision History

Revision	Date	Comments
8235F	09/2014	Changed text in Section 7.1 from 12U-1 to 12U-3. Updated back page.
8235E	03/13	Updated WLCSP ball configuration on page 3. Updated WLCSP package drawing, "12U-3" on page 13
8235D	10/12	Updated Document template, and "Pin Configurations" on page 2
8235C	06/12	Updated "Ordering Information" on page 12. Added Wafer Level Chip Scale Package "12U-3" on page 13.
8235B	04/11	Removed Preliminary status. Updated Bit syntax throughout the datasheet, e.g. from CS02:0 to CS0[2:0], Idle Mode description on page 6, "Capacitive Touch Sensing" on page 7 (section updated and moved), "Disclaimer" on page 7, Sentence on low impedance sources in "Analog Input Circuitry" on page 116, Description on 16-bit registers on page 9, Description on Stack Pointer on page 10, List of active modules in "Idle Mode" on page 23, Description on reset pulse width in "Watchdog Reset" on page 30, Program code on page 37, Bit description in Figure 11-3 on page 62, Section "Compare Output Mode and Waveform Generation" on page 63, Signal descriptions in Figure 11-5 on page 64, and Figure 11-7 on page 67, Equations on page 65, page 66, and page 67, Terminology in sections describing extreme values on page 66, and page 7, Description on creating frequency waveforms on page 67, Signal routing in Figure 12- 1 on page 76, TOP definition in Table 12-1 on page 77, Signal names in Figure 12-3 on page 79, TWSHE bit description in "TWSCRA – TWI Slave Control Register A" on page 143, SPI slave assembly code example on page 129, Table 21-1 on page 174, Section "Speed" on page 168, Characteristics in Figure 21-3 on page 176, and Figure 21-8 on page 179. Added Note on internal voltage reference in Table 15-4 on page 121, PRADC in Table 21-2 on page 175, MISO output driver errata for device rev. A in "Errata" on page 18
8235A	03/10	Initial revision

Atmel Enabling Unlimited Possibilities

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408

T: (+1)(408) 441.0311

F: (+1)(408) 436.4200

www.atmel.com

© 2014 Atmel Corporation. / Rev.: Atmel-8235FS-AVR-ATtiny20-Datasheet_09/2014.

Atmel[®], Atmel logo and combinations thereof, Enabling Unlimited Possibilities[®], and others are registered trademarks or trademarks of Atmel Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINCEMENT. IN NO EVENT SHALL ATMEL BLIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.