搭配内置天线的 FM 低噪声放大器

特性

- 无需耳机及拉杆天线,通过复用 GSM 天线实现 FM 信号接收
- 极低的噪声系数:1.2dB
- 高性能,低噪声的标准 CMOS 工艺
- **21dB**的高增益
- 高线性度
- EN 支持 1.8V/2.8V 的 GPIO
- 工作电压: 2.6V~3.6V
- 关机电流<0.1µA
- 纤小的 2.2×2.2×1 mm³ SOT363-6L 封装

应用

- 手机
- 便携式音频设备

引脚分布及标记图

AW5007A 是一款低噪声放大器,无需耳机和拉杆天 线,通过复用 GSM 天线实现 FM 信号接收。 AW5007A 具有低噪声,高增益,高线性度的特性,典 型值噪声系数 1.2dB,增益 21dB。 AW5007A 的电源电压范围在 2.6V~3.6V 典型值 2.8V, EN 支持 2.8V/1.8V 的 GPIO 口输入。 AW5007A 将 RF 射频开关集成在内部芯片,在关断 的条件下可以实现高阻抗,关机电流小于 0.1µA。 AW5007A 采 用 纤 小 的 2.2mm×2.2mm×1mm SOT363-6L 封装,额定的工作温度范围为-40℃至 85℃。

图1. AW5007A 引脚分布图

手册中提到的全部商标所有权归各自拥有者所有。

FM Low-Noise-Amplifier in Alliance with Internal Antenna

FEATURES

- Without any earphone or telescopic antenna, receive FM-radio signal through re-using GSM antenna
- Ultra-low noise-figure: 1.2dB
- Standard CMOS process technology
- High power gain of 21dB
- High linearity
- EN supports 1.8V / 2.8V GPIO
- Supply voltage: 2.6V~3.6V
- Shut-down current: <0.1µA
- Slim 2.2×2.2×1 mm³ SOT363-6L package

APPLICATIONS

GENERAL DESCRIPTION

AW5007A is a Low-Noise-Amplifier (LNA), without earphone or telescopic antenna, re-using GSM antenna to receive FM-radio signal.

AW5007A is characterized with low noise, high gain and high linearity. Typical noise figure is 1.2dB and power gain is 21dB.

AW5007A is powered by 2.6V~3.6V supply with typical 2.8V. EN supports 2.8V / 1.8V GPIO input.

AW5007A integrates RF radio switch inside, implementing high impedance under shut-down condition. Shut-down current is less than 0.1µA.

AW5007A is available in slim 2.2mm×2.2mm×1mm SOT363-6L package. The specified operating freeair temperature ranges from -40 $^{\circ}$ C to 85 $^{\circ}$ C.

- Mobile phone
- Mobile audio device

PIN CONFIGURATION AND TOP MARK

Figure 1 AW5007A pin configuration and top mark

All trademarks are the property of their respective owners.

TYPICAL APPLICATION CIRCUIT

Figure 2 AW5007A typical application circuit

ORDERING INFORMATION

Table 1 ORDERING INFORMATION

PIN DEFINITION

Table 2 PIN DEFINITION AND THEIR FUNCTION DESCRIPTION

No.	NAME	DESCRIPTION
1	VCC	Supply connection.
2	NC	Not connected. Prefer ground.
3	RFIN	RF input.
4	EN	EN(high) supports 1.8V / 2.8V IO with internal 150Kohm pull-down resistor.
5	GND	Ground.
6	RFOUT	RF output.

ABSOLUTE MAXIMUM RATINGS^(NOTE1)

Table 3 ABSOLUTE MAXIMUM RATINGS

PARAMETERS	RANGE		
Supply Voltage VCC	-0.3 V to 4.2 V		
EN pin voltage	-0.3 V to 4.2 V		
Supply maximum current ICC	30 mA		
RFIN input power Pin	20 dBm		
Junction-to-ambient thermal resistance θ_{JA}	625 ℃/W		
Maximum Junction temperature T _{JMAX}	125 ℃		
Storage temperature T _{STG}	-65 ℃ to 150 ℃		
Operating free-air temperature range	-40 ℃ to 85 ℃		
Lead Temperature (Soldering 10 Seconds)	260 °C		
ESD ^(NOTE 2)			
DINE LIDM (humon hadu madal)	RFIN/RFOUT PINs: ±3500 V		
PINs HBM (human body model)	Other PINs: \pm 5000 V		
Latch-up			
Test Condition: JEDEC STANDARD NO.78B DECEMBER 2008	+IT: +300 mA		
Test Condition. JEDEC STANDARD NO. 16B DECEMBER 2006	-IT:-300 mA		

ELECTRICAL CHARACTERISTICS

Table 4 INFORMATION OF ELECTRICAL CHARACTERISTICS

Test condition: TA=25 °C, VCC=2.8 V, EN=2.8 V, Rs=Ro=50 ohm, frequency=90 MHz for typical values (unless otherwise noted).

	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
VCC	Supply Voltage		2.6	2.8	3.6	V
ISD	Shut-down Current	EN=0V		0.1	1	μA
IQ	Static Current	EN=2.8V		9.2		mA
NF	Noise Figure	Input / Output 50ohm		1.2		dB
S11	Input Return Loss	Input / Output 50ohm		-3.7		dB
S12	Reverse Isolation	Input / Output 50ohm		-39.8		dB
S21	Power Gain	Input / Output 50ohm		21.0		dB
S22	Output Return Loss	Input / Output 50ohm		-20.5		dB
Kf	Stability Factor	Input / Output 50ohm		>1		
IIP3	Input 3rd-order intercept point	(NOTE 3)		-9		dBm
IB P-1dB	In-Band 1dB-compression point	Input / Output 500hm		-20		dBm
OOB P-1dB	Output-Of-Band 1dB- compression point	(NOTE 4)		-7		dBm

NOTE1: Conditions out of those ranges listed in "absolute maximum ratings" may cause permanent damages to the device. In spite of the limits above, functional operation conditions of the device should within the ranges listed in "recommended operating conditions". Exposure to absolute-maximum-rated conditions for prolonged periods may affect device reliability.

NOTE2: The human body model is a 100pF capacitor discharged through a $1.5k\Omega$ resistor into each pin. Test method: MIL-STD-883G Method 3015.7

NOTE3: Measure IIP3 parameter through two tones of -40dBm/tone with the frequency of 97M and 98MHz

NOTE4: Input / Output are both 50-ohm; Input signal is composed of in-band 90-MHz signal and out-of-band 900MHz signal. Signal of 90-MHz is fixed to -40-dBm; signal of 900MHz varies and power level is measured when power gain of 90MHz signal drops 1dB.

TYPICAL CHARACTERISTICS

Test condition: TA=25 °C, VCC=2.8 V, EN=2.8 V, Rs=Ro=50 ohm, frequency=90 MHz for typical values (unless otherwise noted).

INDE	FIGURE No.	
Input Return Loss	S11	FIGURE 3
Power Gain	S21	FIGURE 4
Reverse Isolation	S12	FIGURE 5
Output Return Loss	S22	FIGURE 6
Input / Output Impedance	Zin / Zout	FIGURE 7
Stability Factor	Kf	FIGURE 8
P1dB Compression Point	P1dB(In-band / Out-of-Band)	FIGURE 9
Noise Figure	NF	FIGURE 10

Table 5 TABLE OF FIGURES

Figure 5 Reverse Isolation(S12)

Figure 6 Output Return Loss(S22)

15.0

AW5007ASTR 2015年3月 V1.1

Figure 9 Input P1dB Compression Point(P1dB)

Figure 8 Stability Factor Kf

FUNCTIONAL BLOCK DIAGRAM

MEASUREMENT DIAGRAM

AW5007A DC Test diagram

Test S-parameter

AW5007A S-parameter measurement Diagram

Test Noise-Figure

Signal Generator 3

RFIN

ΕN

AW5007A IIP3 Measurement Diagram

Pin

Figure 15

C1

Power

Combiner

GPIO

1.8V/2.8V

APPLICATION INFORMATION

EN Control

AW5007A supports earphone. When baseband detects earphone inserting, GPIO will pull down, cutting off AW5007A to avoid unnecessary power consumption.

Choice of components

Take Figure 2 for example:

Filter block near PIFA antenna is composed of L6 and C3. These two components can be removed for Dipole antenna. Typical value of L6 is 120 nH and of C3 is 22 pF.

Filter block of FM signal is composed of C1 and L1. GSM signal could go through and FM signal will be blocked. GSM antenna π-type matching circuit is composed of C2, L3 and L4, adjustable based on GSM antenna characteristics. Typically C1 is 22 pF and L1 is 120 nH.

Matching circuit of FM signal path is composed of C4, L4, L5 and L7. FM signal could go through and GSM signal will be blocked. Typically L4 is 100 nH, L5 is 68 nH and L7 is 33 nH.

C5 is supply filtering capacitor. C6 is DC-blocking capacitor. Both are 47 nF typically.

Only when supporting earphone antenna application, C7 is added with the value of 47 nF.

Table 6 shows recommended inductor type and values. Table 7 shows recommended capacitor type and values.

		PART No.	TYP.	Q(mir	n) Frequ	ency	MFR	SIZE
	LQG	15HS33NJ02	33nH	8	100N	/Hz		0402
LQG1		15HS68NJ02	68nH	8	100N		∕lurata	0402
	LQG	15HSR12J02	120nH	8	100N	100MHz		0402
	LQG	15HSR10J02	100nH	8	100N	/Hz		0402
	SDC	L1005C33NJTDF	33nH	8	100N	/Hz		0402
	SDC	L1005C68NJTDF	68nH	8	100N	1Hz Sunlord		0402
	SDC	L1005CR12JTDF	120nH	8	100N	/Hz		0402
	SDC	L1005CR10JTDF	100nH	8	100N	/Hz		0402
\bigcirc		Table	7 СНОЮ	CE OF I	NDUCTOF	R		
		PART No.		TYP.	Voltage	MFR	SIZE	7
				00. F			0.400	7

Table 6 CHOICE OF INDUCTOR

Table 7 CHOICE OF INDUCTOR

PART No.	TYP.	Voltage	MFR	SIZE
GRM1555C1H220JA01	22pF	25V		0402
GRM1555C1H390JA01	39pF	25V	Murata	0402
GRM155R71C473KA01	47nF	16V		0402

www.awinic.com.cn

PACKAGE DESCRIPTION

Unit:mm	SOT363-6L				
Symbol	Min	Тур	Max		
Α	0.900		1.100		
A1	0.000		0.100		
A2	0.900		1.000		
b	0. 150		0.350		
с	0.080		0. 150		
D	2.000		2.200		
е	0.650 TYP				
e1	1.200		1.400		
E	1.150		1.350		
E1	2. 150		2.450		
L1	0.260		0.460		
L	0.525 REF				
θ	0°		8 ⁰		

Figure 16 Package outline

DISCLAIMER

Information in this document is believed to be accurate and reliable. However, Shanghai AWINIC Technology Co., Ltd (AWINIC Technology) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

AWINIC Technology reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Customers shall obtain the latest relevant information before placing orders and shall verify that such information is current and complete. This document supersedes and replaces all information supplied prior to the publication hereof.

AWINIC Technology products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an AWINIC Technology product can reasonably be expected to result in personal injury, death or severe property or environmental damage. AWINIC Technology accepts no liability for inclusion and/or use of AWINIC Technology products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications that are described herein for any of these products are for illustrative purposes only. AWINIC Technology makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

All products are sold subject to the general terms and conditions of commercial sale supplied at the time of order acknowledgement.

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Reproduction of AWINIC information in AWINIC data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. AWINIC is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of AWINIC components or services with statements different from or beyond the parameters stated by AWINIC for that component or service voids all express and any implied warranties for the associated AWINIC component or service and is an unfair and deceptive business practice. AWINIC is not responsible or liable for any such statements.