

NS4203 用户手册 V1.1

深圳市纳芯威科技有限公司 2013年5月

修改历史

日期	版本	作者	修改说明
2013-5-30	V1.1		去除耳机功能

目 录

1	功能说明		5
2	主要特性	<u> </u>	5
3	应用领域	d	5
4	典型应用]电路	5
5	极限参数		6
6	电气特性		6
7	芯片管旗	『描述	7
	7.1 7.2	SOP16 封装管脚分配图	
8	NS4203	典型参考特性	8
9	NS4203)	应用说明	. 11
(9.1 9.2 9.3	芯片基本结构描述	. 12
9	9.4 9.5	エモ, 洋モ朱戸	. 12
(9.6	保护电路	
10	NS4203	应用注意事项	. 13
11	芯片的	対装	. 15
	11 1	SOP16 封装尺寸图	15

图目录

图 1 NS4203 典型应用电路	5
图 2 SOP16 封装管脚分配图(top view)	7
图 3 NS4203 原理框图	11
图 4 EMI 测试频谱图	13
图 5 NS4203 加磁珠应用电路	14
图 6 SOP16 封装尺寸图	15
表 目 录	
表 1 芯片最大物理极限值	6
表 2 NS4203 电气特性	6
表 3 NS4203 管脚描述	8
表 4 NS4203 工作模式设置	12

1 功能说明

NS4203 是一款超低 EMI、无需滤波器、3W 双声道 D类音频功放。NS4203 采用先进的技术,在全带宽范围内极大地降低了 EMI 干扰,最大限度地减少对其他部件的影响。NS4203 无需滤波器的 PWM 调制结构及反馈电阻内置方式减少了外部元件、PCB 面积和系统成本。NS4203 内置过流保护、过热保护及欠压保护功能,有效地保护芯片在异常工作状况下不被损坏。并且利用扩频技术充分优化全新电路设计,高达 85%的效率更加适合便携式音频产品。

NS4203 提供 SOP16 封装,额定的工作温度范围为-40℃至 85℃。

2 主要特性

- 3W 输出功率(10% THD、5V 电源、3Ω 负载)
- 0.2%THD+N(0.5W输出功率、5V电源)
- 优异的全带宽 EMI 抑制能力
- 优异的"上电,掉电"噪声抑制
- 高达 85%的效率
- 高 PSRR: -80dB (217Hz)
- 工作电压范围: 3.0V~5.25V
- 过流保护、过热保护、欠压保护
- SOP16 封装

3 应用领域

- 手提电脑
- 台式电脑
- 低压音响系统

4 典型应用电路

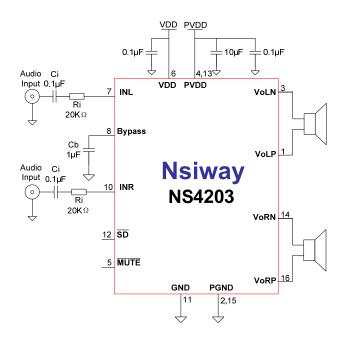


图1 NS4203 典型应用电路

5 极限参数

表1 芯片最大物理极限值

参数	最小值	最大值	单位	说明
电源电压	1.8	6	V	
储存温度	-65	150	°C	
输入电压	-0.3	V_{DD}	V	
耐 ESD 电压	4000		V	
结温	150		°C	
推荐工作温度	-40	85	°C	
推荐工作电压	2.2	5.25		
热阻				
θ _{JC} (SOP16)		20	°C/W	
$\theta_{JA}(SOP16)$		80	°C/W	
焊接温度		220	°C	15 秒内

注: 在极限值之外或任何其他条件下, 芯片的工作性能不予保证。

6 电气特性

限定条件: (TA=25℃)

表2 NS4203 电气特性

符号	参数	测试条件	最小值	标准值	最大值	单位
V_{DD}	电源电压		3.0		5.25	V
T	电源静态电流	$V_{DD} = 3.6V$, $V_{IN} = 0V$, No load		11		mA
I_{DD}		$V_{DD} = 5.0V$, $V_{IN} = 0V$, No load		20		mA
I _{MUTE}	待机电流	$V_{DD} = 3.6V$, $V_{IN} = 0V$ $V_{/MUTE} = 0V$, No load		8		mA
1MUTE		$V_{DD} = 5.0V$, $V_{IN} = 0V$ $V_{/MUTE} = 0V$, No load		16		mA
I_{SD}	关断漏电流	$V_{/SD} = 0V$		1		μΑ
V_{OS}	输出失调电压			10	40	mV
R_{O}	输出电阻			3		ΚΩ
PSRR	电源抑制比	217Hz			-80	dB
1 SIXIX		20KHz			-72	dB
CMRR	共模抑制比			-70		dB
f_{SW}	调制频率	$V_{\rm DD} = 3.0 \text{V to } 5.25 \text{V}$		450		kHz
η	效率	$P_0=1W, R_L=4\Omega, V_{DD}=3.6V$		85		%
V IH	逻辑控制端 高电平		1.4			V
V IL	逻辑控制端 低电平				0.4	V

超低EMI、无需滤波器、3W双声道D类音频功放

P _O	输出功率	THD+N=1%, f=1KHz, R_L =3 Ω	2.5	W
		THD+N=1%, f=1KHz, R_L =4 Ω	2.0	W
		THD+N=1%, f=1KHz, R_L =8 Ω	1.2	W
		THD+N=10%, f=1KHz, R_L =3 Ω	3.0	W
		THD+N=10%, f=1KHz, R_L =4 Ω	2.5	W
		THD+N=10%, f=1KHz, R_L =8 Ω	1.5	W
THD+N	总失真度+噪声	A_{VD} =2, 20Hz \leq f \leq 20KHz R_L =8 Ω , P_0 =0.5W	0.2	%
Stereo Isolation	立体声分离度	$RL=8\Omega$, $Po=0.5W$	-80	dB
SNR	信噪比	$RL=8\Omega$, $Po=0.5W$	90	dB

7 芯片管脚描述

7.1 SOP16 封装管脚分配图

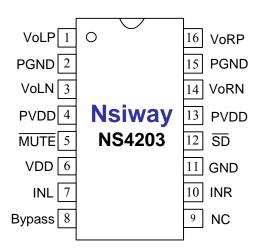
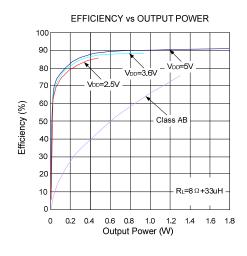


图2 SOP16 封装管脚分配图(top view)



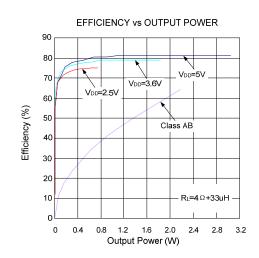
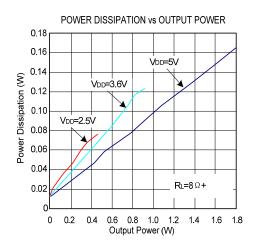
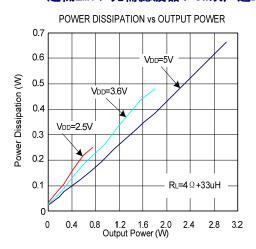
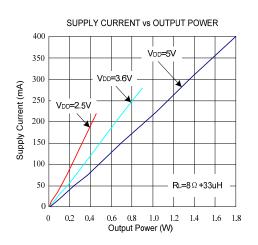

7.2 引脚功能描述

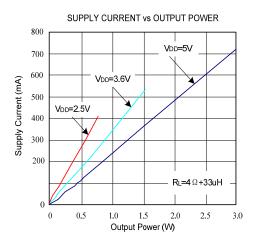
表3 NS4203 管脚描述

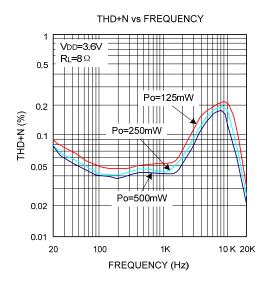
符号	管脚号	描述
VoLP	1	左声道输出正端
PGND	2	功率地
VoLN	3	左声道输出负端
PVDD	4	功率电源输入
/MUTE	5	待机控制,低电平有效(待机)
VDD	6	电源输入
INL	7	左声道输入
Bypass	8	旁路电容
NC	9	空脚
INR	10	右声道输入
GND	11	电源地
/SD	12	关断控制,低电平有效(关断)
PVDD	13	功率电源输入
VoRN	14	右声道输出负端
PGND	15	功率地
VoRP	16	右声道输出正端

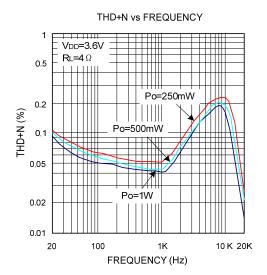

8 NS4203 典型参考特性








超低EMI、无需滤波器、3W双声道D类音频功放



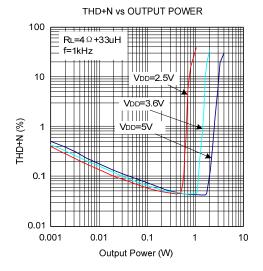
0.01

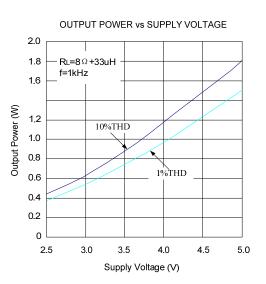
0.001

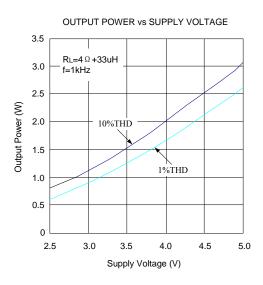
0.01

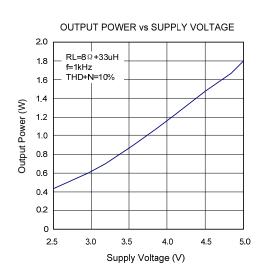
超低EMI、无需滤波器、3W双声道D类音频功放

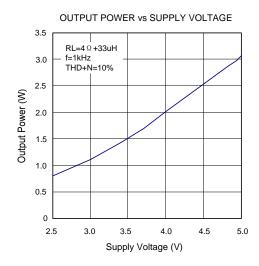
100 RL=8 Ω +33uH f=1kHz 10 VDD=2.5V VDD=3.6V VDD=5V 0.1

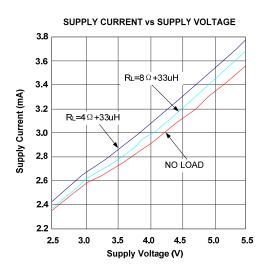

0.1

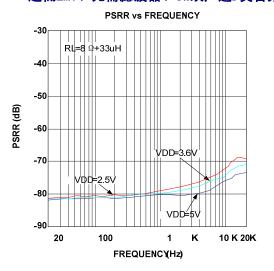

Output Power (W)


10


1


THD+N vs OUTPUT POWER





超低EMI、无需滤波器、3W双声道D类音频功放

9 NS4203 应用说明

9.1 芯片基本结构描述

NS4203 是双声道 D 类音频功率放大器。芯片内部每个通道集成了反馈电阻,放大器的增益可以在外围通过输入电阻设置。其原理框图如下:

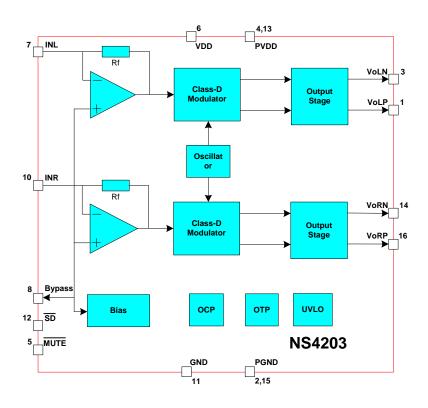


图3 NS4203 原理框图

9.2 NS4203 工作模式

NS4203的工作模式通过管脚/SD和/MUTE设置,如下表

表4 NS4203 工作模式设置

/SD	/MUTE	工作模式
高	高	正常工作
高	低	待机状态
低	低/高	低功耗关断

增益设置

芯片内部调制级的增益为 3,每个通道总增益为 Av=240k/Ri。Ri 为外接输入电阻。

输入电容 Ci 和输入电阻 Ri 选择

输入电容和输入电阻构成高通滤波器,截止频率为 $f_{-3dB} = \frac{1}{2\pi R_{IN}C_{I}}$ 。过大的输入电容,增加成

本、增加面积,这对于成本、面积紧张的应用来讲,非常不利。显然,确定使用多大的电容来完成耦合很重要。实际上,在很多应用中,扬声器(Speaker)不能够再现低于 100Hz-150Hz 的低频语音,因此采用大的电容并不能够改善系统的性能。除了考虑系统的性能,开关/切换噪声的抑制性能受电容的影响,如果耦合电容大,则反馈网络的延迟大,导致 pop 噪声出现,因此,小的耦合电容可以减少该噪声。

旁路电容 Cb 选择

Cb 决定 NS4203 静态工作点的稳定性,所以当开启有爆裂的输入信号时它的值非常关键。Cb 越大,芯片的输出倾斜到静态直流电压(即 VDD/2) 越慢,则开启的爆裂声越小。Cb 取 1uF 可得到一个"滴答声"和"爆裂声"都较小的关断功能。

电源滤波电容选择

在放大器的应用中,电源的旁路设计很重要,特别是对应用方案的噪声性能及电源电压抑制性能。设计中要求滤波电容尽量靠近芯片电源脚。典型的电容为100uF的电解电容并上0.1uF的陶瓷电容。

低功耗关断功能

当/SD 管脚电平为低时,芯片处于关断低功耗状态。实际应用中建议 SD 管脚接下拉电阻。这样保证与/SD 管脚相连悬空或者高阻时芯片处于关断状态。

待机状态控制功能

当/SD 管脚电平为高,/MUTE 管脚电平为低时。芯片进入待机状态。实际应用中建议/MUTE 管脚接下拉电阻。这样保证与/MUTE 管脚相连悬空或者高阻时芯片处于待机状态。

9.3 上电,掉电噪声抑制

NS4203 内置上电,掉电噪声抑制电路,有效地消除了系统在上电、下电、唤醒和关断操作时可能出现的瞬态噪声。

9.4 EMI增强技术

NS4203 内置 EMI 增强技术。 采用先进的技术,在全带宽范围内极大地降低了 EMI 干扰,最大限度地减少对其他部件的影响。如图 6 所示。

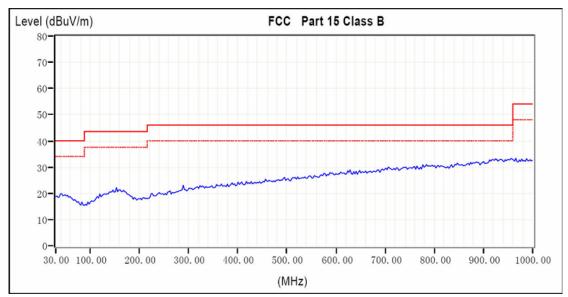


图4 EMI测试频谱图

9.5 效率

NS4203 利用扩展频谱技术充分优化全新 D 类放大器的电路设计,以提高效率。最高可达 85%的效率 更加适合于手机及其他便携式音频产品。

9.6 保护电路

当芯片发生输出引脚与电源或地短路,或者输出之间的短路故障时,过流保护电路会关断芯片以防止芯片被损坏。短路故障消除后,NS4203自动恢复工作。当芯片温度过高时,芯片也会被关断。温度下降后,NS4203继续正常工作。当电源电压过低时,芯片同样会被关断,电源电压恢复后,芯片会再次启动。

10 NS4203 应用注意事项

D 类音频功放 EMI 干扰来源

D 类音频功放的 EMI 干扰主要来源于两个地方。一个是电源线上电流的跳动;另外一个是输出端脉冲信号的边沿。EMI 主要通过 PCB 的走线、通孔和扬声器的连线向外辐射,干扰其他的部件。

NS4203 超低 EMI

便携音频设备电池的寿命和音频功放的效率直接相关。D类音频功放的效率对于延长电池的使用时间是无容置疑。但是对有收音模块的设备来讲,传统 D类音频功放的 EMI 干扰直接限制了 D类功放的使用,令许多设计工程师头痛。NS4203 采用先进的 EMI 增强技术,非常有效降低了 EMI 干扰。

NS4203 应用设计参考

要充分发挥 D 类功放的性能。应用时从以下几个方面可以最大限度降低 D 类音频功放的 EMI 干扰:

- 1. 功放输出到喇叭的走线,连线尽量短,尽量宽,而且输出布线,连线尽可能远离敏感信号线和电路。
- 2. 功放电源脚的去耦电容尽可能靠近芯片引脚。电源线,地线最好采用星形接法。
- 3. 由于空间限制等原因 EMI 干扰较严重时在输出端加磁珠和电容可以有效抑制 EMI 干扰。使用时磁珠和电容尽可能靠近芯片引脚。以下是 NS4203 加了磁珠之后的应用设计参考电路:

Nsiway 13

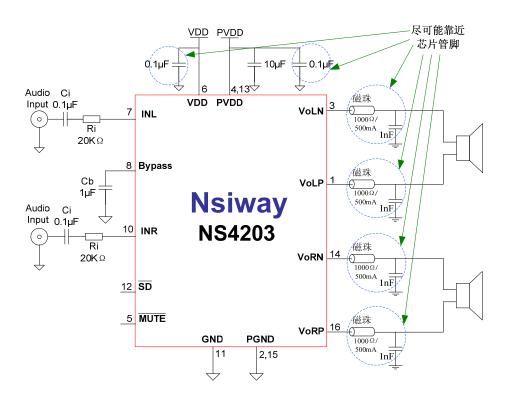
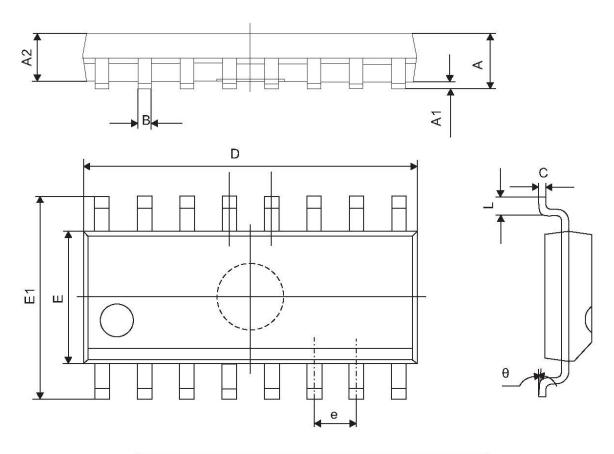



图5 NS4203 加磁珠应用电路

11 芯片的封装

11.1 SOP16 封装尺寸图

Symbol	Dimensions Millimeters			
	Min	Max		
Α	1.350	1.750		
A1	0.100	0.250		
A2	1.350	1.550		
В	0.330	0.510		
С	0.190	0.250		
D	9.800	10.000		
Е	3.800	4.000		
E1	5.800	6.300		
е	1.270	(TYP)		
L	0.400	1.270		
θ	0°	8°		

图6 SOP16 封装尺寸图

声明:深圳市纳芯威科技有限公司保留在任何时间,并且没有通知的情况下修改产品资料和产品规格的权利,本手册的解释权归深圳市纳芯威科技有限公司所有,并负责最终解释。