### **Power MOSFET** 9.0 A, 60 V, N-Channel DPAK/IPAK Designed for low voltage, high speed switching applications in power supplies, converters and power motor controls and bridge circuits. #### **Features** - NVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable - These Devices are Pb-Free and are RoHS Compliant #### **Typical Applications** - Power Supplies - Converters - Power Motor Controls - Bridge Circuits #### **MAXIMUM RATINGS** (T<sub>J</sub> = 25°C unless otherwise noted) | Rating | Symbol | Value | Unit | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------|---------------------| | Drain-to-Source Voltage | V <sub>DSS</sub> | 60 | Vdc | | Drain-to-Gate Voltage (R <sub>GS</sub> = 10 MΩ) | $V_{DGR}$ | 60 | Vdc | | Gate-to-Source Voltage - Continuous - Non-repetitive (t <sub>p</sub> ≤10 ms) | V <sub>GS</sub><br>V <sub>GS</sub> | ±20<br>±30 | Vdc | | | I <sub>D</sub><br>I <sub>D</sub><br>I <sub>DM</sub> | 9.0<br>3.0<br>27 | Adc<br>Apk | | Total Power Dissipation @ T <sub>A</sub> = 25°C Derate above 25°C Total Power Dissipation @ T <sub>A</sub> = 25°C (Note 1) Total Power Dissipation @ T <sub>A</sub> = 25°C (Note 2) | P <sub>D</sub> | 28.8<br>0.19<br>2.1<br>1.5 | W<br>W/°C<br>W<br>W | | Operating and Storage Temperature Range | T <sub>J</sub> , T <sub>stg</sub> | -55 to 175 | °C | | Single Pulse Drain-to-Source Avalanche<br>Energy – Starting $T_J = 25^{\circ}C$<br>( $V_{DD} = 25$ Vdc, $V_{GS} = 10$ Vdc,<br>L = 1.0 mH, $I_L(pk) = 7.75$ A, $V_{DS} = 60$ Vdc) | E <sub>AS</sub> | 30 | mJ | | Thermal Resistance - Junction-to-Case - Junction-to-Ambient (Note 1) - Junction-to-Ambient (Note 2) | $egin{array}{c} R_{ heta JC} \ R_{ heta JA} \ R_{ heta JA} \end{array}$ | 5.2<br>71.4<br>100 | °C/W | | Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds | TL | 260 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - 1. When surface mounted to an FR4 board using 0.5 sq in pad size. - When surface mounted to an FR4 board using minimum recommended pad size. #### ON Semiconductor® www.onsemi.com # 9.0 AMPERES, 60 VOLTS $R_{DS(on)} = 122 \text{ m}\Omega$ (Typ) IPAK CASE 369D (STRAIGHT LEAD) STYLE 2 ## MARKING DIAGRAMS & PIN ASSIGNMENTS A = Assembly Location\* 3150 = Device Code Y = Year WW = Work Week G = Pb-Free Package #### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet. <sup>\*</sup> The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank. #### **ELECTRICAL CHARACTERISTICS** (T<sub>J</sub> = 25°C unless otherwise noted) | Character Character | Symbol | Min | Тур | Max | Unit | | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|--------------|--------------|--------------| | OFF CHARACTERISTICS | | · · | I | | 1 | 1 | | Drain-to-Source Breakdown Voltage (Note 3) (V <sub>GS</sub> = 0 Vdc, I <sub>D</sub> = 250 µAdc) Temperature Coefficient (Positive) | | V <sub>(BR)DSS</sub> | 60<br>- | _<br>70.2 | _<br>_ | Vdc<br>mV/°C | | Zero Gate Voltage Drain Current (V <sub>DS</sub> = 60 Vdc, V <sub>GS</sub> = 0 Vdc) (V <sub>DS</sub> = 60 Vdc, V <sub>GS</sub> = 0 Vdc, T <sub>J</sub> = 150°C) | | I <sub>DSS</sub> | -<br>- | -<br>- | 1.0<br>10 | μAdc | | Gate-Body Leakage Current (V | ( <sub>GS</sub> = ±20 Vdc, V <sub>DS</sub> = 0 Vdc) | I <sub>GSS</sub> | - | - | ±100 | nAdc | | ON CHARACTERISTICS (Note: | 3) | | | 1 | | • | | Gate Threshold Voltage (Note 3 $(V_{DS} = V_{GS}, I_D = 250 \mu Adc)$<br>Threshold Temperature Coeffici | V <sub>GS(th)</sub> | 2.0 | 3.0<br>6.4 | 4.0<br>- | Vdc<br>mV/°C | | | Static Drain-to-Source On-Res<br>(V <sub>GS</sub> = 10 Vdc, I <sub>D</sub> = 4.5 Adc) | R <sub>DS(on)</sub> | - | 122 | 150 | mΩ | | | Static Drain-to-Source On-Volt<br>$(V_{GS} = 10 \text{ Vdc}, I_D = 9.0 \text{ Adc})$<br>$(V_{GS} = 10 \text{ Vdc}, I_D = 4.5 \text{ Adc}, I_D = 4.5 \text{ Adc})$ | V <sub>DS(on)</sub> | -<br>- | 1.4<br>1.1 | 1.9<br>- | Vdc | | | Forward Transconductance (No | g <sub>FS</sub> | - | 5.4 | _ | mhos | | | DYNAMIC CHARACTERISTICS | 1 | | | | | | | Input Capacitance | | C <sub>iss</sub> | - | 200 | 280 | pF | | Output Capacitance | (V <sub>DS</sub> = 25 Vdc, V <sub>GS</sub> = 0 Vdc,<br>f = 1.0 MHz) | C <sub>oss</sub> | - | 70 | 100 | | | Transfer Capacitance | , | C <sub>rss</sub> | - | 26 | 40 | | | SWITCHING CHARACTERISTIC | CS (Note 4) | | | | | | | Turn-On Delay Time | | t <sub>d(on)</sub> | _ | 11.2 | 25 | ns | | Rise Time | (V <sub>DD</sub> = 48 Vdc, I <sub>D</sub> = 9.0 Adc,<br>V <sub>GS</sub> = 10 Vdc, | t <sub>r</sub> | - | 37.1 | 80 | | | Turn-Off Delay Time | $R_{GS} = 10 \text{ VdC},$ $R_{G} = 9.1 \Omega) \text{ (Note 3)}$ | t <sub>d(off)</sub> | - | 12.2 | 25 | | | Fall Time | | t <sub>f</sub> | - | 23 | 50 | | | Gate Charge | | Q <sub>T</sub> | - | 7.1 | 15 | nC | | | (V <sub>DS</sub> = 48 Vdc, I <sub>D</sub> = 9.0 Adc,<br>V <sub>GS</sub> = 10 Vdc) (Note 3) | Q <sub>1</sub> | _ | 1.7 | - | | | | | Q <sub>2</sub> | - | 3.5 | - | | | SOURCE-DRAIN DIODE CHAR | RACTERISTICS | | | | | | | Forward On-Voltage | $(I_S = 9.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc}) \text{ (Note 3)}$<br>$(I_S = 19 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 150^{\circ}\text{C})$ | V <sub>SD</sub> | - | 0.98<br>0.86 | 1.20<br>– | Vdc | | Reverse Recovery Time | | t <sub>rr</sub> | - | 28.9 | - | ns | | | $(I_S = 9.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, \\ dI_S/dt = 100 \text{ A/}\mu\text{s}) \text{ (Note 3)}$ | ta | _ | 21.6 | - | 1 | | | | t <sub>b</sub> | - | 7.3 | - | ] | | Reverse Recovery Stored Char | Q <sub>RR</sub> | - | 0.036 | _ | μC | | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: Pulse Width $\leq$ 300 µs, Duty Cycle $\leq$ 2%. <sup>4.</sup> Switching characteristics are independent of operating junction temperatures. Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics Figure 3. On–Resistance versus Gate–To–Source Voltage Figure 4. On-Resistance versus Drain Current and Gate Voltage Figure 5. On–Resistance Variation with Temperature Figure 6. Drain-To-Source Leakage Current versus Voltage Figure 7. Capacitance Variation Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge Figure 9. Resistive Switching Time Variation versus Gate Resistance Figure 10. Diode Forward Voltage versus Current Figure 11. Maximum Rated Forward Biased Safe Operating Area Figure 12. Maximum Avalanche Energy versus Starting Junction Temperature Figure 13. Thermal Response #### **ORDERING INFORMATION** | Device | Package | Shipping <sup>†</sup> | |---------------------|-----------------------|-----------------------| | NTD3055-150G | DPAK<br>(Pb-Free) | 75 Units / Rail | | NTD3055-150-1G | IPAK<br>(Pb-Free) | 75 Units / Rail | | NTD3055-150T4G | DPAK<br>(Pb-Free) | 2500 / Tape & Reel | | NTD3055-150T4H | DPAK<br>(Halide-Free) | 2500 / Tape & Reel | | NVD3055-150T4G* | DPAK<br>(Pb-Free) | 2500 / Tape & Reel | | NVD3055-150T4G-VF01 | DPAK<br>(Pb-Free) | 2500 / Tape & Reel | <sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. <sup>\*</sup>NVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable. #### PACKAGE DIMENSIONS ### **DPAK (SINGLE GAUGE)** CASE 369C ISSUE F - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE. 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY. - OUTERMOST EXTREMES OF THE PLASTIC BODY. 6. DATUMS A AND B ARE DETERMINED AT DATUM - PLANE H. 7. OPTIONAL MOLD FEATURE. | | INCHES | | MILLIMETERS | | | |-----|-----------|------------|-------------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 0.086 | 0.094 | 2.18 | 2.38 | | | A1 | 0.000 | 0.005 | 0.00 | 0.13 | | | b | 0.025 | 0.035 | 0.63 | 0.89 | | | b2 | 0.028 | 0.045 | 0.72 | 1.14 | | | b3 | 0.180 | 0.215 | 4.57 | 5.46 | | | С | 0.018 | 0.024 | 0.46 | 0.61 | | | c2 | 0.018 | 0.024 | 0.46 | 0.61 | | | D | 0.235 | 0.245 | 5.97 | 6.22 | | | E | 0.250 | 0.265 | 6.35 | 6.73 | | | е | 0.090 | 90 BSC 2.2 | | BSC | | | Н | 0.370 | 0.410 | 9.40 | 10.41 | | | L | 0.055 | 0.070 | 1.40 | 1.78 | | | L1 | 0.114 REF | | 2.90 REF | | | | L2 | 0.020 BSC | | 0.51 BSC | | | | L3 | 0.035 | 0.050 | 0.89 | 1.27 | | | L4 | | 0.040 | | 1.01 | | | Z | 0.155 | | 3.93 | | | - STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN #### 6.20 3.00 0.244 0.118 2.58 0.102 5.80 6.17 1.60 0.228 0.063 0.243 (mm inches) SCALE 3:1 <sup>\*</sup>For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### PACKAGE DIMENSIONS #### IPAK CASE 369D ISSUE C #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER - ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH. | | INCHES | | MILLIMETERS | | |-----|-----------|-------|-------------|------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.235 | 0.245 | 5.97 | 6.35 | | В | 0.250 | 0.265 | 6.35 | 6.73 | | С | 0.086 | 0.094 | 2.19 | 2.38 | | D | 0.027 | 0.035 | 0.69 | 0.88 | | Е | 0.018 | 0.023 | 0.46 | 0.58 | | F | 0.037 | 0.045 | 0.94 | 1.14 | | G | 0.090 BSC | | 2.29 BSC | | | Н | 0.034 | 0.040 | 0.87 1.0 | | | J | 0.018 | 0.023 | 0.46 | 0.58 | | Κ | 0.350 | 0.380 | 8.89 | 9.65 | | R | 0.180 | 0.215 | 4.45 | 5.45 | | S | 0.025 | 0.040 | 0.63 | 1.01 | | ٧ | 0.035 | 0.050 | 0.89 | 1.27 | | Z | 0.155 | | 3.93 | | STYLE 2: PIN 1. GATE - 2. DRAIN - SOURCE DRAIN ON Semiconductor and warrands of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="https://www.onsemi.com/site/pdt/Patent-Marking.pdf">www.onsemi.com/site/pdt/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or nuauthorized application, Buyer shall indemnify and hold #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative