

BCT2028 500mA Low Dropout Linear Regulators

GENERAL DESCRIPTION

The BCT2028 series low-power, low-noise, low-dropout, CMOS linear voltage regulators operate from a 2.5V to 5.5V input voltage. They are the perfect choice for low voltage, low power applications. A low ground current makes this part attractive for battery operated power systems. The BCT2028 series also offer ultra-low dropout voltage to prolong battery life in portable electronics. Output current minimum limit is 500mA, and over-current protection limit is set at 700mA typical. An external noise bypass capacitor connected to the device's BP pin can further reduce the noise level.

These devices feature a shutdown function and are offered in active low with auto discharge. The output voltage is preset to voltages in the range of 1.2V to 3.3V. Other features include a low shutdown current, fold-back current limit and thermal shutdown protection.

The BCT2028 is available in Green SOT23-5 packages. It operates over an ambient temperature range of -40°C to +85°C.

FEATURES

- Low Output Noise
- Low Dropout Voltage
- Thermal-Overload Protection
- Output Current Limit
- High PSRR(74dB at 1kHz)
- 500mA Current Rating
- Available in Multiple output Voltage Versions
- Fixed Outputs of 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 2.85V, 3.0V and 3.3V
- Adjustable Output from 1.2V to 3.3V
- Quick output discharge
- -40°C to 85°C Operating Temperature Range
- Available in Green SOT23-5 Packages

APPLICATIONS

Cellular Telephones Cordless Telephones PCMCIA Cards Modems MP3 Player Hand-Held Instruments Portable/Battery-Powered Equipment

ORDERING INFORMATION

Order Number	V _{OUT} (V)	Package Type	Temperature Range	Marking	QTY/Reel	
BCT2028EUK12-TR	1.2	SOT23-5	-40°C to +85°C	F2ZZ	3000	
BCT2028EUK15-TR	1.5	SOT23-5 -40°C to +85°C		F5ZZ	3000	
BCT2028EUK18-TR	1.8	SOT23-5	-40°C to +85°C	F8ZZ	3000	
BCT2028EUK25-TR	2.5	SOT23-5	-40°C to +85°C	F5ZZ	3000	
BCT2028EUK28-TR	2.8	SOT23-5	-40°C to +85°C	F8ZZ	3000	
BCT2028EUK29-TR	2.85	SOT23-5	-40°C to +85°C	F9ZZ	3000	
BCT2028EUK30-TR	3	SOT23-5	-40°C to +85°C	F <u>0</u> ZZ	3000	
BCT2028EUK33-TR	3.3	SOT23-5	-40°C to +85°C	F <u>3</u> ZZ	3000	
BCT2028EUKAJ-TR	ADJ	SOT23-5	-5 -40°C to +85°C F <u>J</u> ZZ		3000	

ORDER NUMBER BCT2028 X XX XX -TR

MARKING DESCRIPTION

F: Product Code

X: Output Voltage Code

V _{OUT} (V)	Code			
1.2	2			
1.5	5			
1.8	8			
2.5	5			
2.8	8			
2.85	<u>9</u>			
3.0	<u>0</u>			
3.3	<u>3</u>			
ADJ	J			

Z: The year of manufacturing, "1" stands for year 2011, "2" stands for year 2012, "7" stands for year 2017 and "8" stands for year 2018.

Z: The week of manufacturing. "A" stands for week 1, "Z" stands for week 26, " \overline{A} " stands for week 27, " \overline{Z} " stands for week 52.

ABSOLUTE MAXIMUM RATINGS

EN to GND0.3V to V_{IN}
OUT, BP/FB to GND0.3V to (V_{IN}+0.3V)
Output Short-Circuit DurationInfinite
Power Dissipation, $P_D@T_A=25^{\circ}C$
SOT-23-50.4W
Package Thermal Resistance
SOT-23-5, θ _{JA} 250°C/W
Junction Temperature150 $^\circ\!\mathrm{C}$
Operating Temperature Range40 $^\circ\!\mathrm{C}$ to +85 $^\circ\!\mathrm{C}$
Storage Temperature Range65 $^\circ\!{\rm C}$ to 150 $^\circ\!{\rm C}$
Lead Temperature (Soldering, 10 sec)260 $^\circ\!\mathrm{C}$
ESD Susceptibility
HBM4000V
MM400V

NOTE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. Broadchip recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Broadchip reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact Broadchip sales office to get the latest datasheet.

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION		
1	IN	Regulator Input. Supply voltage can range from 2.5V to 5.5V. Bypass with a		
I.	IIN	1uF capacitor to GND.		
2	GND	Ground.		
3	EN	Shutdown Input. A logic low reduces the supply current to 10nA. Connect to		
3		IN for normal operation.		
	BP	Reference-Noise Bypass (fixed voltage version only). Bypass with a		
4	DP	low-leakage 0.01uF ceramic capacitor for reduced noise at the output.		
4	FB	Adjustable Voltage Version Only. This is used to set the output voltage of the		
	ГD	device.		
5	OUT	Regulator Output.		

ELECTRICAL CHARACTERISTICS

$(V_{IN} = V_{OUT(NOMINAL)} + 0.5V^{(1)}, T_A = -40^{\circ}C \text{ to } +85$	5° C, unless otherwise specified.)
---	---

PARAMETER	SYM	CONDITION	IS	MIN	TYP	MAX	UNITS	
Input Voltage	V _{IN}			2.5		5.5	V	
Output Voltage Accuracy ⁽¹⁾		I _{OUT} =0.1mA		-2.5		2.5	%	
Maximum Output Current				500			mA	
Current Limit	I _{LIM}				700		mA	
Ground Pin Current	Ι _Q	No load, EN=2V			100	200	uA	
Dropout Voltogo ^{(2)}		I _{OUT} =1mA			0.9			
Dropout Voltage ⁽²⁾		I _{OUT} =500mA			270	500	- mV	
Line Regulation	ΔV_{LNR}	V _{IN} =2.5V or (V _{OUT} +0.5V)	to			0/ /\/		
Line Regulation		5.5V, I _{OUT} =1mA			0.1		%/V	
		I _{OUT} =0.1mA to 500mA,		0.002			- %/mA	
Load Regulation	ΔV_{LDR}	C _{OUT} =1uF, V _{OUT} >2V						
Load Regulation		I _{OUT} =0.1mA to 500mA,		0.004				
		C _{OUT} =1uF, V _{OUT} ≪2V						
Output Voltage Noise	en	f=10Hz to 100kHz,					uV _{RM}	
	en	С _{вР} =0.01uF, С _{ОUT} =10uF			50		• • RMS	
	PSRR	C _{BP} =0.101,	f=		77			
Power Supply Rejection Ratio		I _{LOAD} =50mA, C _{OUT} =1uF,	217Hz				dB	
		V _{IN} =V _{OUT} +1V	f=1kHz		74			
SHUTDWON ⁽³⁾								
EN Input Threshold	V _{IH}	V _{IN} =2.5V to 5.5V,		1.5			V	
		V_{EN} =-0.3V to V_{IN}				0.3	v	
EN Input Bias Current		EN=0V or EN=5.5V			0.01	1	uA	
Shutdown Supply Current	I _{Q(SHDN)}	EN=0.4V			0.01		uA	
Shutdown Exit Delay ⁽⁴⁾		$C_{BP}=0.01 \text{uF}, C_{OUT}=1 \text{uF},$			30		us	
-		No Load			50		40	
THERMAL PROTECTION					r	[
Thermal Shutdown Temperature	T _{SHDN}				150		°C	
Thermal Shutdown Hysteresis	ΔT_{SHDI}	N			15		°C	

NOTES:

1. VIN = VOUT (NOMINAL) + 0.5V or 2.5V, whichever is greater.

2. The dropout voltage is defined as VIN - VOUT, when VOUT is 100mV below the value of VOUT for VIN = VOUT + 0.5V. (Only applicable for VOUT = +2.5V to +5.0V.)

3. VEN = -0.3V to VIN

4. Time needed for VOUT to reach 90% of final value.

TYPICAL APPLICATION CIRCUIT

NOTE: VOUT = (R1 + R2)/ R2 × 1.207

APPLICATION NOTE

Bypass Capacitor and Low Noise

Connecting a 10nF between the BP pin and GND pin significantly reduces noise on the regulator output, it is critical that the capacitor connection between the BP pin and GND pin be direct and PCB traces should be as short as possible. There is a relationship between the bypass capacitor value and the LDO regulator turn on time. DC leakage on this pin can affect the LDO regulator output noise and voltage regulation performance.

Enable Function

The BCT2028 features an LDO regulator enable/disable function. To assure the LDO regulator will switch on; the EN turn on control level must be greater than 1.5 volts. The LDO regulator will go into the shutdown mode when the voltage on the EN pin falls below 0.3 volts. For to protect the system, the BCT2028 have a quick discharge function. If the enable function is not needed in a specific application, it may be tied to VIN to keep the LDO regulator in a continuously on state.

Programming the BCT2028 Adjustable LDO regulator

The output voltage of the BCT2028 adjustable regulator is programmed using an external resistor divider as show in Figure as below. The output voltage is calculated using equation as below:

$$V_{OUT} = V_{REF} \times \left(1 + \frac{R1}{R2}\right)$$

Where:

V_{REF}=1.207V typ (the internal reference voltage)

Resistors R1 and R2 should be chosen for approximately 50uA divider current. Lower value resistors can be used for improved noise performance, but the solution consumes more power. Higher resistor values should be avoided as leakage current into/out of FB across R1/R2 creates an offset voltage that artificially increases/decreases the feedback voltage and thus erroneously decrease/increases V_{OUT}.

Thermal Considerations

Thermal protection limits power dissipation in BCT2028. When the operation junction temperature exceeds 150°C, the OTP circuit starts the thermal shutdown function turn the pass element off. The pass element turns on again after the junction temperature cools by 15°C.

For continue operation, do not exceed absolute maximum operation junction temperature 125°C. The power dissipation definition in device is:

 $\mathsf{P}_{\mathsf{D}} = (\mathsf{V}_{\mathsf{IN}} - \mathsf{V}_{\mathsf{OUT}}) \times \mathsf{I}_{\mathsf{OUT}} + \mathsf{V}_{\mathsf{IN}} \times \mathsf{I}_{\mathsf{Q}}$

The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient. The maximum power dissipation can be calculated by following formula:

 $\mathsf{P}_\mathsf{D}(\mathsf{MAX}) = (\mathsf{T}_\mathsf{J}(\mathsf{MAX}) - \mathsf{T}_\mathsf{A}) / \theta_\mathsf{JA}$

Where $T_J(MAX)$ is the maximum operation junction temperature 125°C, T_A is the ambient temperature and the θ_{JA} is the junction to ambient thermal resistance. For recommended operating conditions specification of BCT2028, where $T_J(MAX)$ is the maximum junction temperature of the die (125°C) and T_A is the maximum ambient temperature. The junction to ambient thermal resistance (θ_{JA} is layout dependent) for SOT-23-5 package is 250°C/W, on standard JEDEC 51-3 thermal test board. The maximum power dissipation at T_A = 25°C can be calculated by following formula:

 $P_D(MAX) = (125^{\circ}C-25^{\circ}C)/250 = 400 \text{mW} (SOT-23-5)$

The maximum power dissipation depends on operating ambient temperature for fixed $T_J(MAX)$ and thermal resistance θ_{JA} . It is also useful to calculate the junction of temperature of the BCT2028 under a set of specific conditions. In this example let the Input voltage V_{IN} =3.3V, the output current Io=500mA and the case temperature T_A =40°C measured by a thermal couple during operation. The power dissipation for the Vo=2.8V version of the BCT2028 can be calculated as:

P_D = (3.3V-2.8V) ×500mA+3.6V×100uA =250mW

And the junction temperature, T_J, can be calculated as follows:

 $T_J = T_A + P_D \times \theta_{JA} = 40^{\circ}C + 0.25W \times 250^{\circ}C/W$ =40^{\circ}C + 62.5^{\circ}C = 102.5^{\circ}C < T_J(MAX) = 125^{\circ}C

For this operating condition, T_J is lower than the absolute maximum operating junction temperature,125°C, so it is safe to use the BCT2028 in this configuration.

PACKAGE OUTLINE DIMENSIONS

SOT23-5

Symbol	Dimensions In Millimeters				
Symbol	Min	Max			
A	1.05	1.3			
A1	0	0.15			
A2	1.05	1.15			
b	0.28	0.5			
С	0.1	0.23			
D	2.82	3.02			
E1	1.5	1.7			
E	2.65	3.05			
е	0.95(BSC)				
e1	1.8	2			
L	0.3	0.6			
θ	0 8°				

SOT-23-5 Surface Mount Package

2,7

0,95

1,90 -

0,55

LAND PATTERN DATA

