

CC6101

具有斩波稳定功能的高精度,

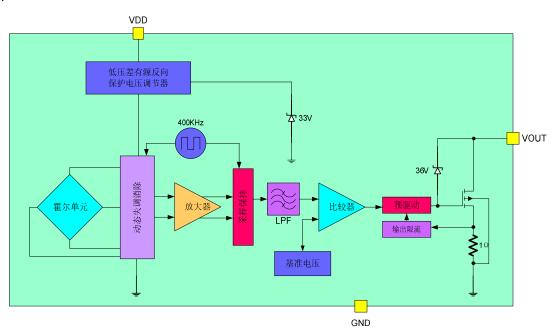
低温漂锁存型霍尔效应开关

概述

CC6101是一个锁存型的霍尔效应开关IC,采用先进的BiCMOS制程制造,具有优异的温度稳定性和很高的抗机械应力性能,产品最高工作温度可以达到150℃。CC6101采用动态失调消除技术以及芯进电子专利保护的温度补偿技术,大幅降低了由于封装应力,环境温度变化等因素造成的失调电压,使产品磁灵敏度持高度的一致性。

CC6101包含稳压输出模块,霍尔薄片,信号放大模块,动态失调消除模块以及带有限流保护的功率输出级。当磁场南极靠近芯片 CC6101TO标识面,磁场强度达到阈值时,功率管导通,输出低电平。当磁场北极靠近芯片CC6101TO标识面,磁场强度达到阈值时,功率管截止,输出高电平。内置的稳压输出电路模块可以让芯片工作在2.5V至28V电源电压范围。

CC6101提供TO-92S和TSOT23-3两种封装,均为符合RoHS规范,产品的使用环境温度范围为-40~150℃。

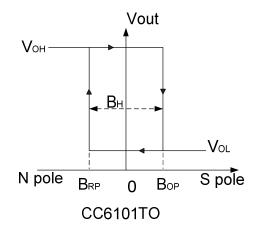

特点

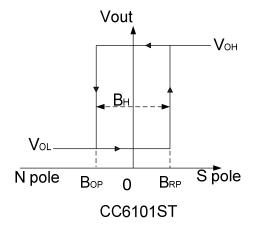
- ◆ 工作范围宽, 2.5~28V
- ◆ 开关点高度对称
- ◆ 反向电压保护,最高可到 -40V
- ◆ 具有斩波稳定功能,批次之间的一致性好
- ◆ 30V 过压保护,避免 IC 因电源电压脉冲而损坏
- ◆ 温度稳定性优异,可工作到 150℃
- ◆ 输出级限流保护 30mA
- ◆ 输出级 36V 过压保护,避免输出脚被干扰电压击穿
- ◆ 小尺寸, TO-92S 和 TSOT23-3 封装
- ◆ 抗机械应力
- ♦ ESD HBM 4000V

应用

- ◆ 直流无刷马达
- ◆ 速度检测
- ◆ 线性位置检测
- ◆ 角度检测

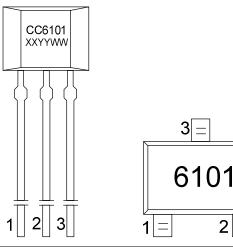
功能框图





订购信息

名称	封装型号	备注
CC6101TO	TO-92S	袋装,1000 片/包
CC6101ST	TSOT23-3	卷盘, 3000 片/卷


开关输出 vs. 磁场极性

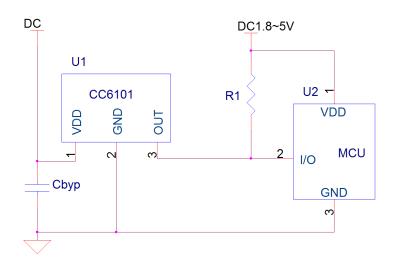
注意: 磁场加在芯片的丝印面

管脚描述

名称	管脚编号		功能	
4000	TO-92S	TSOT23-3	切配	
V_{DD}	1	1	电源电压	
GND	2	3	地	
V _{OUT}	3	2	输出	

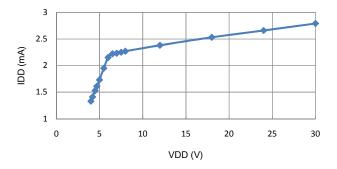
极限参数

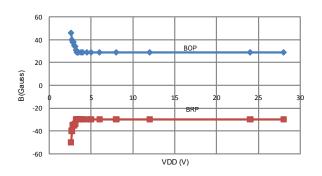
参数	符号	数值	单位	
电源电压	V_{DD}	30	V	
反向耐压	V_{RDD}	-40	V	
持续电流	I _{OUT}	30	mA	
输出脚耐压	V _{OUT}	30	V	
磁场强度	В	无限制	Gauss	
工作环境温度	T _A	-40~150	$^{\circ}$	
存储环境温度	存储环境温度 Ts -50 至 160		$^{\circ}$	
ESD(HBM)		4000	V	

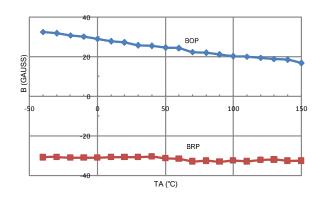

电气参数

参数	符号	测试环境	最小值	典型值	最大值	单位
电源电压	V_{DD}	-	2.5	-	28.0	V
静态电流	I _{DD}	25 °C, V _{DD} =12V	-	2	-	mA
输出饱和压降	V_{SAT}	25 ℃,I _{OUT} =20mA	-	-	0.4	V
输出限流值	I _{limit}		30	-	60	mA
上升时间	tr	R _L =820Ω, C _L =20pF	-	0.2	-	us
下降时间	tf	R _L =820Ω, C _L =20pF	-	0.1	-	us
反向电流	I _{RDD}	V _{DD} =-40V	-	-	5	mA

磁参数

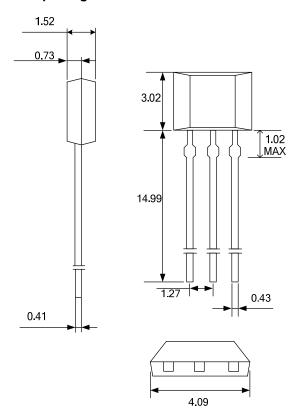

?	参数	符号	测试环境	最小值	典型值	最大值	单位
I	作点	B _{OP}	25 ℃	15	30	45	Gauss
释	F 放点	B _{RP}	25 ℃	-45	-30	-15	Gauss
	迟滞	B _{HYS}	25 ℃	50	60	70	Gauss


典型应用电路


波形和曲线

静态电流 vs. 工作电压

磁感应点 vs. 工作电压



磁感应点 vs. 温度

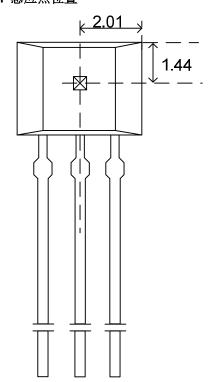
封装信息

(1)TO-92S package

注意: 所有单位均为毫米。

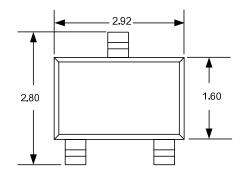
打标信息:

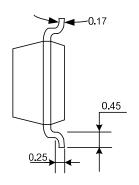
第一行: CC6101-产品名称


第二行: XXYYWW

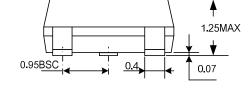
XX - 代码

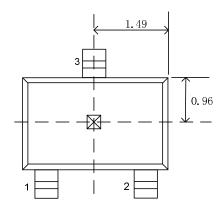
YY - 封装年份的后两位数


WW - 封装时的星期数


Hall 感应点位置

(2)TSOT23-3 package




注意: 所有单位均为毫米。

打标信息:

第一行: 6101

Hall 感应点位置

