

CC1801

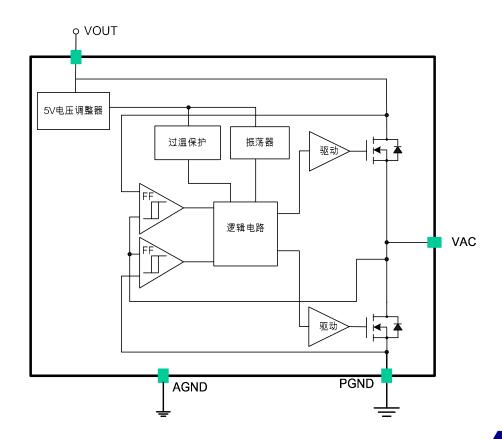
4A/35V 低损耗有源同步整流半桥

概述

CC1801是一个同步整流半桥芯片,其内部集成了基准电路,振荡器电路、比较器电路、电荷泵升压电路和2个低达31mΩ导通电阻MOSFET。两颗CC1801可以配合使用构成一个全波有源同步整流桥,实现AC到DC的转换,或者无极性输入。 它在简化供电部分的线路设计的同时降低了供电功耗,特别适用于低压大电流的应用环境。CC1801内置2个N沟道MOSFET功率管,在内部控制器的作用下,检测外界的电源输入极性,并自动切换为直流供电的驱动器。每2颗芯片就可以组成低功耗的全桥驱动器,内部的专利控制方法可避免电流由输出端反流至输入端,适用于0~600Hz的频率输入范围。

CC1801内部集成两个导通电阻(RDSON)为31mΩ的MOSFET,构成的同步整流桥相对于传统肖特基二极管构成的整流桥能够降低80%功耗,PCB板占用的面积小50%,不需要额外的散热片,支持最高AC(DC)35V输入,电流最高可达4A,工作频率范围为0~600Hz。

CC1801采用DFN3x3和SOP8低热阻封装,工作温度范围为-40~125℃,均符合RoHS的相关要求。

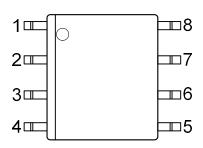

特点

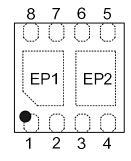
- ◆ 工作电压范围宽, 7~35V
- ◆ 内置 MOSFET RDSON=31mΩ,最大持续工作电流可达 4A
- ◆ 工作频率为0~600Hz
- ◆ 采用专利控制技术,实现同步有源整流控制
- ◆ 良好的温度稳定性
- ◆ ESD (HBM) 4000V
- ◆ 小尺寸DFN3x3和SOP8封装

应用

- ◆ 肖特基整流桥替代
- ◆ 极性未知的电源输入端
- ◆ 配电系统
- ◆ 安保摄像头
- ◆ 二次供电电源

功能框图





订购信息

名称	封装型号	备注
CC1801DN	DFN3x3	卷盘, 3000 片/卷
CC1801SO	SOP-8	卷盘, 3000 片/卷

管脚描述

SOP8(顶视图)

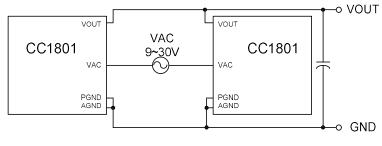
DFN3*3(顶视图)

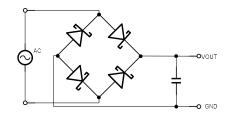
名称	管脚编号	功能	名称	管脚编号	功能
PGND	1	功率地	VAC	5	整流输入
PGND	2	功率地	VAC	6	整流输入
PGND	3	功率地	VOUT	7	整流输出
AGND	4	地	VOUT	8	整流输出
VOUT	EP1 (DFN)	整流输出	VAC	EP2 (DFN)	整流输入

极限参数

参数	符号	数值	单位
电源电压	VAC	-3~35	V
输出电压	Vоит	-0.3~35	V
持续输出电流	Icon	4	A
峰值输出电流	I PEAK	6	A
封装热阻	Rθ	60	°C/W
工作环境温度	T _A	-40~125	℃
存储环境温度	Ts	-50~150	℃
ESD(HBM)		4000	V

推荐应用条件

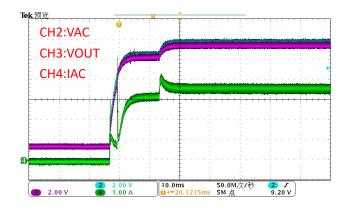

参数	符号	数值	单位
输入电压范围	VAC	-3~35	V
输入电压频率范围	fin	0~600Hz	V
工作电流	Іоит	2~4A	°C/W
工作环境温度	T _A	-40~125	°C

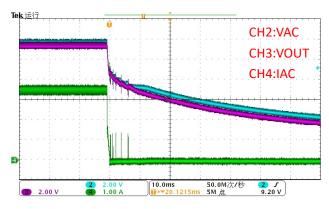

电气参数(如无特别标明, VIN=12V @ 25°C)

参数	符号	测试环境	最小值	典型值	最大值	单位
VAC 电压范围	VAC		-	17	35	V
持续导通电流	IAC		-	-	4	Α
VAC 输入频率	f _{AC}		-	-	600	Hz
VAC 输入电流	I _{VAC}	VAC=Vout - 100mV, Vout=10V		300	500	uA
VOUT 电压范围	Vouт		8.5	-	35	V
UVLO 阈值电压	V _{UVLO}	falling edge	-	6.5	-	V
HS 导通电阻	R _{DS_HS}	VAC - VOUT > V _{HSON}		31	40	mΩ
LS 导通电阻	R _{DS_LS}	PGND - VAC > V _{LSON}		31	40	mΩ
过温保护	OTP		-	160	-	°C
迟滞点			-	20	-	°C

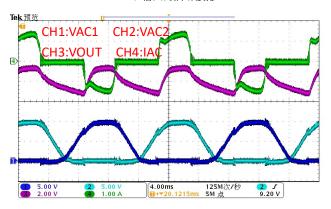
典型应用电路

典型应用线路



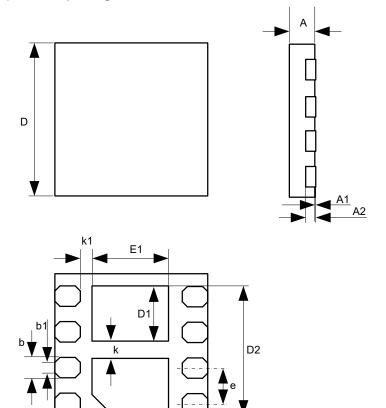

传统的肖特基二极管整流桥

传统的二极管整流桥通常半桥的压降为 1.4V,即使采用了肖特基二极管,其压降也在 0.7V 左右,当负载电流较大时,其自身消耗功率占了不可忽略的一部分,必须安排散热空间才能保证线路板的长期工作的可靠性。而 CC1801 由于采用了同步整流技术,输出管采用低阻抗的 MOSFET,将半桥的导通阻抗控制在 0.05Ω左右,在 3A 电流条件下,其损耗只**有** 0.5W,在大功率应用环境下,自身的功耗优于传统整流桥,可以大幅度降低 80%,使得该应用可以完全替代传统的二极管整流桥,并降低系统板的温升,提高其工作可靠性。


曲线 & 波形

DC 输入的启动波形

DC 输入的关断波形

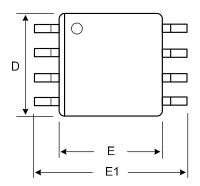


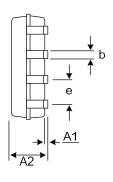
AC 输入的工作波形

封装信息

(1)DFN3X3 package

ㅁㅗ	毫米				
尺寸	最小值	典型值	最大值		
D	2.900	3.000	3.100		
D1	0.925	1.025	1.125		
D2	2.300	2.400	2.500		
E1	1.500	1.600	1.700		
Α	0.700	0.750	0.800		
A1	0.000	0.025	0.050		
A2	0.203REF				
b	0.300	-	0.400		
b1	0.220REF				
k	0.350REF				
k1	0.280REF				
е	0.650BSC				
L	0.370 - 0.470				


注意: 所有单位均为毫米。


打标信息:

第一行:1801-产品名称

(2) SOP-8 封装信息

ớn □	mm		
符号	最小值	最大值	
А	1.350	1.750	
A1	0.100	0.250	
A2	1.350	1.550	
b	0.330	0.510	
С	0.170	0.250	
D	4.700	5.100	
E	3.800	4.000	
E1	5.800	6.200	
е	1.270(BSC)		
L	0.400	1.270	

注意:

1. 所有尺寸单位均为毫米。

打标:

第一行: CC1801- 产品名称

第二行: XXYYWW

XX - 代码

YY - 年度后两位数字

WW - 星期数