



High Efficiency 5.5V, 6A, 2.4MHz I<sup>2</sup>C Programmable, Synchronous Step Down Regulator *Preliminary Specification* 

## **General Description**

SY8827E is a high efficiency 2.4MHz synchronous step down DC/DC regulator IC capable of delivering up to 6A output currents. It can operate over a wide input voltage range from 2.5V to 5.5V and integrate main switch and synchronous switch with very low  $R_{DS (ON)}$  to minimize the conduction loss. The output voltage can be programmed from 0.6V to 1.3875V through I<sup>2</sup>C interface.

SY8827E is in a space saving, low profile CSP1.56\*1.96-20 package.

## **Ordering Information**



| Ordering Number | Package Type    | Note 👩   |
|-----------------|-----------------|----------|
| SY8827EPKC      | CSP1.56*1.96-20 | 6A       |
|                 |                 |          |
|                 | c.s.            | <u> </u> |
|                 |                 | <u> </u> |

## Features

- Input voltage range: 2.5V to 5.5V
- 2.4 MHz switching frequency minimizes the external components
- Typical 65uA quiescent current
- Low  $R_{DS(ON)}$  for internal switches (PFET/NFET):  $28m\Omega/17m\Omega$
- Programmable Output Voltage: 0.6V to 1.3875V in 12.5mV steps
- 6A continuous output current capability.
- Capable for 0.25uH inductor and 22uF Ceramic Capacitor.
- Hie-cup mode protection for hard short condition
- RoHS Compliant and Halogen Free
- Compact package: CSP1.56\*1.96-20

## Applications

- Smart-phone
- Web-tablets

# Typical Applications



Figure 1. Schematic Diagram

Figure2. Efficiency



## Pinout (top view)



Note 1: x=year code, y=week code, z= lot number code.

| Pin               | Pin Name   | Pin Description                                                          |
|-------------------|------------|--------------------------------------------------------------------------|
| D1,D2,E1,E2       | VIN        | Power input pin. These pins must be decoupled to ground with at least    |
|                   |            | 22uF ceramic capacitor. The input capacitor should be placed as close    |
|                   |            | as possible between VIN and GND pins.                                    |
| D3,D4,E3,E4       | SW         | Switching node pin. Connect these pins to the switching node of          |
|                   |            | inductor.                                                                |
| B2,B3,C1,C2,C3,C4 | GND        | Power ground pins.                                                       |
| A1                | VSEL       | Voltage select pin. When this pin is low, $V_{OUT}$ is set by the VSEL0  |
|                   | <b>•••</b> | register. When this pin is high, $V_{OUT}$ is set by the VSEL1 register. |
| A2                | EN         | Enable control pin. Active high. Do not leave it floating.               |
| B1                | SDA        | I <sup>2</sup> C interface Bi-directional Data line.                     |
| B4                | AGND       | Analog ground pin.                                                       |
| A3                | SCL        | I <sup>2</sup> C interface clock line.                                   |
| A4                | VOUT       | Sense pin for output. Connect to the output capacitor side.              |
|                   |            |                                                                          |



3

## Absolute Maximum Ratings (Note 1)

| /IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.0         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| All Other Pins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VIN + 0.6   |
| Power Dissipation, PD @ TA = 25°C CSP1.56*1.96-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.61        |
| Package Thermal Resistance (Note 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| θ <sub>JA</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 38°C/W      |
| θ <sub>JC</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8°C/V       |
| function Temperature Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 150°C       |
| Lead Temperature (Soldering, 10 sec.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| Storage Temperature Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
| ESD Susceptibility (Note 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| <b>Recommended Operating Conditions</b> (Note 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100         |
| Supply Input Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.5V to 5.5 |
| Dutput Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.5V to 5   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| Ambient Temperature Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40°C to 85° |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| c.O <sup>℃</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| $c_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| $c^{(1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| Ambient Temperature Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
| and the second sec |             |
| ilergy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| cileroy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| sileroy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| sileroy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |



## **Electrical Characteristics**

(VIN = 5V, VOUT = 2.5V, L = 0.33uH, COUT = 22uF, TA = 25°C, unless otherwise specified)

| Parameter                                | Symbol                  | Test Conditions                                        | Min  | Тур              | Max  | Unit |
|------------------------------------------|-------------------------|--------------------------------------------------------|------|------------------|------|------|
| Input Voltage Range                      | $V_{IN}$                |                                                        | 2.5  |                  | 5.5  | V    |
| V <sub>IN</sub> UVLO                     | V <sub>UVLO</sub>       | V <sub>IN</sub> Rising                                 |      | 2.35             | 2.45 | V    |
| V <sub>IN</sub> UVLO Hysteresis          | V <sub>UVHYST</sub>     |                                                        |      | 150              |      | mV   |
| Quiescent Current                        | IQ                      | I <sub>OUT</sub> =0, EN=1,<br>FB=105%*V <sub>REF</sub> |      | 65               |      | μΑ   |
| Shutdown Current                         | I <sub>SHDN H/W</sub>   | EN=0                                                   |      | 2                | 2    |      |
|                                          | I <sub>SHDN S/W</sub>   | EN=V <sub>IN</sub> , Buck_ENx=0                        |      | 41               | Q    | μA   |
| EN, VSEL, SDA, SCL                       |                         |                                                        |      |                  | 5    |      |
| Rising threshold                         | $V_{\mathrm{IH}}$       |                                                        | 1.1  | X                |      | V    |
| Falling threshold                        | V <sub>IL</sub>         |                                                        |      | $\mathbf{O}^{+}$ | 0.4  | V    |
|                                          |                         |                                                        |      |                  |      |      |
| V <sub>OUT</sub> Accuracy                | V <sub>REG</sub>        | Forced PWM, V <sub>OUT</sub> =VSEL0,<br>default value  | -1.5 |                  | +1.5 | %    |
| NFET R <sub>DS(ON)</sub>                 | R <sub>DS(ON)N</sub>    |                                                        |      | 17               |      | mΩ   |
| PFET R <sub>DS(ON)</sub>                 | R <sub>DS(ON)P</sub>    |                                                        |      | 28               |      | mΩ   |
| PMOS peak current limit                  | I <sub>LIM PEAK</sub>   |                                                        | 7.5  |                  |      | Α    |
| NMOS peak current limit                  | I <sub>LIM VALLEY</sub> | - Ar                                                   | 6    |                  |      | Α    |
| Internal soft-start time                 | t <sub>SS</sub>         |                                                        |      | 300              |      | us   |
| Min on time                              |                         |                                                        |      | 40               |      | ns   |
| Oscillator Frequency                     | F <sub>OSC</sub>        |                                                        |      | 2.4              |      | MHz  |
| Thermal Shutdown                         |                         |                                                        |      | 150              |      | °C   |
| Temperature                              | $T_{SD}$                |                                                        |      | 130              |      | -    |
| Thermal Shutdown Hysteresis              | T <sub>HYS</sub>        |                                                        |      | 15               |      | °C   |
| LX node discharge resistor               | R <sub>DSH</sub>        |                                                        |      | 150              |      | Ω    |
| Input OVP shutdown                       |                         | Rising threshold                                       |      | 6.15             |      | V    |
|                                          | Vove                    | Falling threshold                                      | 5.5  | 5.85             |      | V    |
| Over voltage protection<br>blanking time | Blanking                |                                                        |      | 20               |      | us   |

**Note 1**: Stresses beyond the 'Absolute Maximum Ratings' may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2:  $\theta$  JA is measured in the natural convection at T<sub>A</sub> = 25°C on a low effective single layer thermal conductivity test board of IEDEC 51-3 thermal measurement standard.

Note3: The device is not guaranteed to function outside its operating conditions.



### **Enabling Function**

The EN pin controls SY8827E start up. EN pin low to high transition starts the power up sequencer. If EN pin is low, the DC/DC converter will be turned off.

SY8827E allows software to enable of the regulator when EN is HIGH, via the BUCK\_EN bits. BUCK\_EN0 and BUCK\_EN1 are both initialized HIGH in the registers.

| F  | Pins | Bi       |          |        |
|----|------|----------|----------|--------|
| EN | VSEL | BUCK_EN0 | BUCK_EN1 | OUTPUT |
| 0  | Х    | Х        | Х        | OFF    |
| 1  | 0    | 0        | Х        | OFF    |
| 1  | 0    | 1        | Х        | ON     |
| 1  | 1    | Х        | 0        | OFF    |
| 1  | 1    | Х        | 1        | ON     |

Hardware and Software Enable control table.

#### **Input Over Voltage Protection Function**

When the  $V_{IN}$  exceeds over voltage protection threshold, SY8827E will stop switching to protect the circuitry. An internal 20us blanking time filter helps to prevent the circuit from shutting down due to noise spikes.

## I<sup>2</sup>C Interface

SY8827E features an  $I^2C$  interface that allow the HOST processor to control the output voltage achieve the DVS function. The  $I^2C$  interface supports clock speeds of up to 3.4MHz and uses standard  $I^2C$  commands. SY8827E always operates as a slave device, and is addressed using a 7-bit slave address followed by an 8<sup>th</sup> bit, which indicates whether the transaction is a read-operation or a write-operation.  $I^2C$  address of the SY8827E is set at the factory to 0xC0h.

### START and STOP Conditions:

SY8827E is controlled via an I<sup>2</sup>C compatible interface. The START condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The STOP condition is a LOW to HIGH transition on the SDA line while SCL is HIGH. A STOP condition must be sent before each START condition. The I<sup>2</sup>C master always generates the START and STOP conditions.



Data Validity.

The data on the SDA line must be stable during the HIGH period of the SCL, unless generating a START or STOP condition. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW.





6

#### Acknowledge:

Each address and data transmission uses 9-clock pulses. The ninth pulse is the acknowledge bit (ACK). After the

START condition, the master sends 7-slave address bits and an R/W bit during the next 8-clock pulses. During the ninth clock pulse, the device that recognizes its own address holds the data line low to acknowledge. The acknowledge bit is also used by both the master and the slave to acknowledge receipt of register addresses and data.



#### Data Transactions:

All transactions start with a control byte sent from the  $I^2C$  master device. The control byte begins with a START condition, followed by 7-bits of slave address (<u>1100000x</u> for the SY8827E, this address can be changed if necessary)

followed by the 8<sup>th</sup> bit, R/W bit. The R/W bit is 0 for a write or 1 for a read. If any slave devices on the  $I^2C$  bus recognize their address, they will acknowledge by pulling the SDA line low for the last clock cycle in the control byte. If no slaves exist at that address or are not ready to communicate, the data line will be 1, indicating a Not Acknowledge condition. Once the control byte is sent, and SY8827E acknowledges it, the 2nd byte sent by the master must be a register address byte. The register address byte tells the SY8827E which register the master will write or read. Once the SY8827E receives a register address byte it responds with an acknowledge.





### **Register Settings:**

### 1. VSEL0 (0x00)

| Register Name   |     |     |                                     | VSEL0                                                                                                             |
|-----------------|-----|-----|-------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Address         |     |     |                                     | 0x00                                                                                                              |
| Field           | Bit | R/W | Default                             | Description                                                                                                       |
| BUCK_EN0        | 7   | R/W | 1                                   | Software buck enable. When EN pin is low, the regulator is off. When EN pin is high, BUCK_EN bit takes precedent. |
| MODE0           | 6   | R/W | 0                                   | 0=Allow auto-PFM mode during light load.<br>1=Forced PWM mode                                                     |
| NSEL0           | 5:0 | R/W | 101100<br>(V <sub>OUT</sub> =1.15V) | 000000 = 0.60V<br>000001 = 0.6125V<br><br>101100 = 1.15 V<br><br>111111=1.3875V                                   |
| 2. VSEL1 (0x01) |     |     |                                     | 0                                                                                                                 |

## 2. VSEL1 (0x01)

| . VSELI (0x01) |     |          |                                     |                                                                                                                         |
|----------------|-----|----------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Register Name  |     |          |                                     | VSEL1                                                                                                                   |
| Address        |     |          | C                                   | 0x01                                                                                                                    |
| Field          | Bit | R/W      | Default 🔿                           | Description                                                                                                             |
| BUCK_EN1       | 7   | R/W      |                                     | Software buck enable. When EN pin is low,<br>the regulator is off. When EN pin is high,<br>BUCK_EN bit takes precedent. |
| MODE1          | 6   | R/W      | 1 der                               | 0=Allow auto-PFM mode during light load.<br>1=Forced PWM mode                                                           |
| NSEL1          | 5:0 | RWO      | 101100<br>(V <sub>OUT</sub> =1.15V) | 000000 = 0.60V<br>000001 = 0.6125V<br><br>101100 = 1.15 V<br>                                                           |
| sileroy        |     | <b>k</b> |                                     | 111111=1.3875V                                                                                                          |



## 3. Control Register (0x02)

| Register Name       |       |     |                  | Control Register                                                                                                                                                                                                                         |
|---------------------|-------|-----|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Address             |       |     |                  | 0x02                                                                                                                                                                                                                                     |
| Field               | Bit   | R/W | Default          | Description                                                                                                                                                                                                                              |
| Output<br>Discharge | 7     | R/W | 1                | 0 = discharge resistor is disabled.<br>1 = discharge resistor is enabled.                                                                                                                                                                |
| Slew Rate           | 6:4   | R/W | 011=12.5mV/1.2us | Set the slew rate for positive voltage<br>transitions.<br>000 = 12.5mV/0.15us<br>001 = 12.5mV/0.3us<br>010 = 12.5mV/0.6us<br>011 = 12.5mV/1.2us<br>100 = 12.5mV/2.4us<br>101 = 12.5mV/4.8us<br>110 = 12.5mV/9.6us<br>111 = 12.5mV/19.2us |
| Reserved            | 3:0   | R/W | 0000             | Always reads back 0.                                                                                                                                                                                                                     |
| 4. ID1 Register (l  | )x03) |     |                  | ales                                                                                                                                                                                                                                     |

## 4. ID1 Register (0x03)

| I IDI Register (0  | 100) |     |             |                                                                                                                 |
|--------------------|------|-----|-------------|-----------------------------------------------------------------------------------------------------------------|
| Register Name      |      |     |             | ID1 Register                                                                                                    |
| Address            |      |     | $\diamond$  | 0x03                                                                                                            |
| Field              | Bit  | R/W | Default     | Description                                                                                                     |
| VENDOR             | 7:5  | R   | 100         | IC vendor code.                                                                                                 |
| Reverved           | 4    | R   | 0,00        | Always reads back 0.                                                                                            |
| DIE_ID             | 3:0  | R   | <b>Q000</b> |                                                                                                                 |
| 5. ID2 Register (0 | x04) | cÓ  | <u> </u>    |                                                                                                                 |
|                    |      |     |             | The second se |

## 5. ID2 Register (0x04)

| Register Name |     | $\mathbf{O}$ |         | ID2 Register         |  |
|---------------|-----|--------------|---------|----------------------|--|
| Address       |     | <b>D</b> •   |         | 0x04                 |  |
| Field         | Bit | R/W          | Default | Description          |  |
| Reverved      | 7:4 | R            | 0000    | Always reads back 0. |  |
| DIE_REV       | 3:0 | R            | 1100    |                      |  |
| silero        | 2   |              |         |                      |  |



## 6. PGOOD Register (0x05)

| Register Name |     |        |           | PGOOD Register                                  |
|---------------|-----|--------|-----------|-------------------------------------------------|
| Address       |     |        |           | 0x05                                            |
| Field         | Bit | R/W    | Default   | Description                                     |
| PGOOD         | 7   | R      | 0         | 1: Buck is enabled and soft-start is completed. |
| Reserved      | 6:0 | R      | 000 0000  | Always reads back 0.                            |
| silerov       |     | Q<br>Q | tidential | completed.<br>Always reads back 0.              |



# **Typical Performance Characteristics**













## Operation

SY $\overline{8827E}$  is a high efficiency 2.4MHz synchronous step down DC/DC regulator IC capable of delivering up to 6A output currents. It can operate over a wide input voltage range from 2.5V to 5.5V and integrate main switch and synchronous switch with very low R<sub>DS (ON)</sub> to minimize the conduction loss. The output voltage can be programmed from 0.6V to 1.3875V through I<sup>2</sup>C interface.

## **Applications Information**

Because of the high integration in SY8827E, the application circuit based on this regulator IC is rather simple. Only input capacitor  $C_{IN}$ , output capacitor  $C_{OUT}$ , inductor L need to be selected for the targeted applications.

### **Input capacitor CIN**

This ripple current through input capacitor is calculated as:

$$I_{\text{CIN}_{\text{RMS}}} = I_{\text{OUT}} \times \sqrt{D(1-D)}$$
(A)

This formula has a maximum at  $V_{IN}=2 \times V_{OUT}$  condition, where  $I_{CIN RMS}=I_{OUT}/2$ .

With the maximum load current at 6A, a typical X5R or better grade ceramic capacitor with 6.3V rating and greater than 22uF capacitance can handle this ripple current well. To minimize the potential noise problem, place this ceramic capacitor really close to the VIN and GND pins. Care should be taken to minimize the loop area formed by C<sub>IN</sub>, and VIN/GND pins.

### Output capacitor Cour

Both steady state ripple and transient requirements must be taken into account when selecting this capacitor. For the best performance, it is recommended to use X5R or better grade ceramic capacitor with 6.3V rating and more than one  $22\mu$ F capacitor.

### Output inductor L:

There are several considerations in choosing this inductor.

1) Choose the inductance to provide the desired ripple current. It is suggested to choose the ripple current to be about 40% of the maximum

average input current. The inductance is calculated as:

$$L = \frac{V_{OUT}(1 - V_{OUT}/V_{IN\_MAX})}{F_{SW} \times I_{OUT\_MAX} \times 40\%} (H)$$

where  $F_{SW}$  is the switching frequency and  $I_{OUT\_MAX}$  is the maximum load current.

SY8827E is less sensitive to the ripple current variations. Consequently, the final choice of inductance can be slightly off the calculation value without significantly impacting the performance.

2) The saturation current rating of an inductor must be selected to guarantee an adequate margin to the peak inductor current under full load conditions.

Isat, MIN > IOUT, MAX + 
$$\frac{V_{OUT}(1-V_{OUT}/V_{IN,MAX})}{2 \cdot F_{SW} \cdot L}$$

3) The DOR of the inductor and the core loss at the switching frequency must be low enough to achieve the desired efficiency requirement. It is desirable to choose an inductor with DCR<15m $\Omega$  to achieve a good overall efficiency.

#### Layout Design:

To achieve a higher efficiency and better noise immunity, following components should be placed close to the IC:  $C_{IN}$ , L,  $C_{OUT}$ .

1) It is desirable to maximize the PCB copper area connecting to GND pin to achieve the best thermal and noise performance. Reasonable vias are suggested to be placed underneath the ground pad to enhance the soldering quality and thermal performance.

2) The decoupling capacitor of VIN and GND must be placed close enough to the pins. The loop area formed by the capacitors and GND must be minimized.

3) The PCB copper area associated with SW pin must be minimized to improve the noise immunity.

4) The feedback trace connecting  $C_{OUT}$  to the VOUT pin must NOT be adjacent to the SW node on the PCB layout to minimize the noise coupling to VOUT pin.



# **PCB Layout Suggestion**











Notes: All dimension in MM and exclude mold flash & metal bur