CHIP COIL (CHIP INDUCTORS) LQW15AN□□□□0ZD Murata Standard Reference Specification 【AEC-Q200】 #### 1. Scope This Reference specification applies to LQW15AN_0ZD series, Chip coil (Chip Inductors) for automotive Electronics based on AEC-Q200 except for Power train and Safety. 2. Part Numbering (ex) LQ W 15 A N 1N5 B 0 Z D Product ID Structure Dimension (L×W) Applications Category Inductance Tolerance Features Application D:Taping Characteristics #### 3. Rating Operating Temperature Range Storage Temperature Range. -55°C ~ +125°C -55°C ~ +125°C | Customer
Part Number | MURATA
Part Number | (*1) re
co | uctance
fer to below
mment | Q (*1)
(min.) | DC
Resistance
(*1) | Self Resonant
Frequency (*1)
(GHz min.) | Rated
Current
(mA) | ESD
Rank
6:25k | | |-------------------------|----------------------------------|---------------|----------------------------------|------------------|--------------------------|---|--------------------------|----------------------|--| | | | (nH) | Tolerance | | (Ω max.) | (OHZ IIIIII.) | (110-1) | 0.201 | | | | LQW15AN1N5B0ZD | | B:±0.1nH | | | | | | | | | LQW15AN1N5C0ZD | 1.5 | C:±0.2nH | | 0.03 | 18.0 | 1000 | | | | | LQW15AN1N5D0ZD | | D:±0.5nH | | | | | | | | | LQW15AN1N6C0ZD | 1.6 | | | 0.07 | | 750 | | | | | LQW15AN1N6D0ZD | 1.0 | | 10 | 0.07 | 17 | | | | | | LQW15AN1N7C0ZD | 1.7 | C:±0.2nH | | 0.10 | | 640 | | | | | LQW15AN1N7D0ZD | | D:±0.5nH | | | | | | | | | LQW15AN1N8C0ZD | 1.8 | | | 0.16 | 16 | 460 | | | | | LQW15AN1N8D0ZD | | | | **** | | | _ | | | | LQW15AN2N4B0ZD | | | | | | | | | | | LQW15AN2N4C0ZD | 2.4 | | | | | | | | | | LQW15AN2N4D0ZD | | | | | | | | | | | LQW15AN2N5B0ZD | | | | | | | | | | | LQW15AN2N5C0ZD | 2.5 | | | | | | | | | | LQW15AN2N5D0ZD | | 0.0 | | 0.05 | 45.0 | | 6 | | | | LQW15AN2N6B0ZD | | | | | | | | | | | LQW15AN2N6C0ZD | | | | | | 850 | | | | | LQW15AN2N6D0ZD | | | | | | | | | | | LQW15AN2N7B0ZD | | | | | | | | | | | LQW15AN2N7C0ZD | | 2.7 | | 15.0 | | 6 | | | | | LQW15AN2N7D0ZD | | 4 | | 20 | 20 | | | | | | LQW15AN2N8B0ZD | 0.0 | | | | - | | | | | | LQW15AN2N8C0ZD | 2.8 | B:±0.1nH | | | | | | | | | LQW15AN2N8D0ZD | | C:±0.2nH | | | | | - | | | | LQW15AN2N9B0ZD | 0.0 | D:±0.5nH | | | | 750 | | | | | LQW15AN2N9C0ZD | 2.9 | | | | | | | | | | LQW15AN2N9D0ZD | | 4 | | 0.07 | | | | | | | LQW15AN3N0B0ZD | 2.0 | | | | | | | | | | LQW15AN3N0C0ZD | 3.0 | | | | | | | | | | LQW15AN3N0D0ZD
LQW15AN3N1B0ZD | | | | | | | - | | | | LQW15AN3N1C0ZD | | | | 0.13 | | 570 | | | | | LQW15AN3N1D0ZD | | | | 0.13 | | 570 | | | | | LQW15AN3N1D0ZD | | 1 | | | 14.0 | | + | | | | LQW15AN3N2C0ZD | 3.2 | | 15 | 0.17 | | 500 | | | | | LQW15AN3N2D0ZD | 5.2 | | 15 | 0.17 | | 500 | | | | | LQW15AN3N2B0ZD | | - | | | | | 1 | | | | LQW15AN3N9C0ZD | 3.9 | | 25 | 0.07 | 10.0 | 750 | | | | | LGVV 10/11V01V3CUZD | 0.0 | 1 | 20 | 0.07 | 10.0 | , 50 | 1 | | | Customer
Part Number | MURATA
Part Number | (*1) re | luctance
fer to below
omment | Q (*1)
(min.) | DC
Resistance
(*1) | Self Resonant
Frequency (*1) | Rated
Current | ESD
Rank | |-------------------------|-----------------------|-------------|------------------------------------|------------------|--------------------------|---------------------------------|------------------|-------------| | | | (nH) | Tolerance | () | (Ω max.) | (GHz min.) | (mA) | 6:25kV | | | LQW15AN4N1B0ZD | , , | | | | | | | | | LQW15AN4N1C0ZD | 4.1 | | | | | | | | | LQW15AN4N1D0ZD | | | | | 40.0 | | | | | LQW15AN4N3B0ZD | | 1 | | | 10.0 | | | | | LQW15AN4N3C0ZD | 4.3 | | | | | | | | | LQW15AN4N3D0ZD | | | | | | | | | | LQW15AN4N4B0ZD | | 1 | | | | | | | | LQW15AN4N4C0ZD | 4.4 | | | | | | | | | LQW15AN4N4D0ZD | | | | | | | | | | LQW15AN4N5B0ZD | | † | | | | | | | | LQW15AN4N5C0ZD | 4.5 | | | 0.07 | | 750 | | | | LQW15AN4N5D0ZD | 7.0 | | | 0.07 | | 7.50 | | | | LQW15AN4N6B0ZD | | + | | | | | | | | LQW15AN4N6C0ZD | 4.6 | | | | | | | | | | 4.0 | | | | | | | | | LQW15AN4N6D0ZD | | - | | | | | | | | LQW15AN4N7B0ZD | 4 7 | | | | | | | | | LQW15AN4N7C0ZD | 4.7 | | | | | | | | | LQW15AN4N7D0ZD | | 1 | | | | | | | | LQW15AN4N8B0ZD | | | | | | | | | | LQW15AN4N8C0ZD | 4.8 | | | | 8.0 | | | | | LQW15AN4N8D0ZD | | 1 | | | | 8.0 | _ | | | LQW15AN4N9B0ZD | | | | | 0.0 | | | | | LQW15AN4N9C0ZD | 4.9 | | | | | | | | | LQW15AN4N9D0ZD | | | | | | | | | | LQW15AN5N0B0ZD | | B:±0.1nH | | | | | | | | LQW15AN5N0C0ZD | 5.0 | C:±0.2nH | | 0.12 | | 600 | | | | LQW15AN5N0D0ZD | | D:±0.5nH | 25 | | | | 6 | | | LQW15AN5N1B0ZD | | | 25 | | | | 0 | | | LQW15AN5N1C0ZD | 5.1 | | | | | | | | | LQW15AN5N1D0ZD | | | | | | | | | | LQW15AN5N8B0ZD | | | | | | | | | | LQW15AN5N8C0ZD | 5.8 | | | | | | | | | LQW15AN5N8D0ZD | | | | | | | | | | LQW15AN6N2B0ZD | | 1 | | | | | | | | LQW15AN6N2C0ZD | 6.2 | | | | | | | | | LQW15AN6N2D0ZD | | | | | | | | | | LQW15AN6N3B0ZD | | 1 | | | | | | | | LQW15AN6N3C0ZD | 6.3 | | | | | | | | | LQW15AN6N3D0ZD | | | | | | | | | | LQW15AN6N4B0ZD | | 1 | | | | | | | | LQW15AN6N4C0ZD | 6.4 | | | | | | | | | LQW15AN6N4D0ZD | 0.4 | | | | | | | | | LQW15AN6N5B0ZD | | 1 | | 0.09 | | 700 | | | | LQW15AN6N5C0ZD | 6.5 | | | | | | | | | | 15AN6N5D0ZD | | | | | | | | | | | - | | | 6.0 | | | | | LQW15AN6N6B0ZD | 6.0 | | | | | | | | | LQW15AN6N6C0ZD | 6.6 | | | | | | | | | LQW15AN6N6D0ZD | | 1 | | | | | | | | LQW15AN6N7B0ZD | | | | | | | | | | LQW15AN6N7C0ZD | 6.7 | | | | | | | | | LQW15AN6N7D0ZD | | | | | | | | | | LQW15AN6N8G0ZD | _ | G:±2% | | | | | | | | LQW15AN6N8H0ZD | 6.8 | H:±3% | | | | | | | | LQW15AN6N8J0ZD | | J:±5% | | | | | | | Customer
Part Number | MURATA
Part Number | (*1) re | uctance
fer to below
omment | Q (*1)
(min.) | DC
Resistance
(*1) | Self Resonant
Frequency (*1) | Rated
Current | ESD
Rank | |---|-----------------------|---------|-----------------------------------|------------------|--------------------------|---------------------------------|------------------|-------------| | T dit Hamboi | T dit Hambon | (nH) | Tolerance | (111111.) | (Ω max.) | (GHz min.) | (mA) | 6:25kV | | | LQW15AN6N9G0ZD | . , | | | , | | | | | | LQW15AN6N9H0ZD | 6.9 | | | | | | | | | LQW15AN6N9J0ZD | | | | | | | | | | LQW15AN7N0G0ZD | | | | | | | | | | LQW15AN7N0H0ZD | 7.0 | | | | | | | | | LQW15AN7N0J0ZD | | | | | | | | | | LQW15AN7N1G0ZD | | | | | | | | | | LQW15AN7N1H0ZD | 7.1 | | | | | | | | | LQW15AN7N1J0ZD | | | | 0.40 | 0.0 | 570 | | | | LQW15AN7N2G0ZD | | | | 0.13 | 6.0 | 570 | | | | LQW15AN7N2H0ZD | 7.2 | | | | | | | | | LQW15AN7N2J0ZD | | | | | | | | | | LQW15AN7N3G0ZD | | | | | | | | | | LQW15AN7N3H0ZD | 7.3 | | | | | | | | | LQW15AN7N3J0ZD | | | | | | | | | | LQW15AN7N5G0ZD | | 1 | | | | | | | | LQW15AN7N5H0ZD | 7.5 | | | | | | | | | LQW15AN7N5J0ZD | | | | | | | | | | LQW15AN8N2G0ZD | | | | | | | | | | LQW15AN8N2H0ZD | 8.2 | | | | | | | | *************************************** | LQW15AN8N2J0ZD | | | | | | | | | | LQW15AN8N6G0ZD | | | | | | | | | | LQW15AN8N6H0ZD | 8.6 | | | | | | | | | LQW15AN8N6J0ZD | | | | | | | | | | LQW15AN8N7G0ZD | | G:±2% | | | | | | | | LQW15AN8N7H0ZD | 8.7 | | | | | | | | | LQW15AN8N7J0ZD | · · · · | | | | | | | | | LQW15AN8N8G0ZD | | H:±3% | 25 | | | | 6 | | | LQW15AN8N8H0ZD | 8.8 | J:±5% | | | | | | | | LQW15AN8N8J0ZD | 0.0 | | | | | | | | | LQW15AN8N9G0ZD | | | | | | | | | | LQW15AN8N9H0ZD | 8.9 | | | | | | | | | LQW15AN8N9J0ZD | | | | | | | | | | LQW15AN9N0G0ZD | | | | | | | | | | LQW15AN9N0H0ZD | 9.0 | | | | | | | | | LQW15AN9N0J0ZD | 0.0 | | | | | | | | | LQW15AN9N1G0ZD | | | | 0.14 | 5.5 | 540 | | | | LQW15AN9N1H0ZD | 9.1 | | | | | | | | | LQW15AN9N1J0ZD | | | | | | | | | | LQW15AN9N2G0ZD | | | | | | | | | | LQW15AN9N2H0ZD | 9.2 | | | | | | | | | LQW15AN9N2J0ZD | | | | | | | | | | LQW15AN9N3G0ZD | | 1 | | | | | | | | LQW15AN9N3H0ZD | 9.3 | | | | | | | | | LQW15AN9N3J0ZD | | 5.5 | | | | | | | | LQW15AN9N4G0ZD | | | | | | | | | | LQW15AN9N4H0ZD | 9.4 | | | | | | | | | LQW15AN9N4J0ZD | | | | | | | | | | LQW15AN9N5G0ZD | | | | | | | | | | LQW15AN9N5H0ZD | 9.5 | | | | | | | | | LQW15AN9N5J0ZD | 3.5 | | | | | | | | | LQW15AN9N6G0ZD | | 1 | | | | | | | | LQW15AN9N6H0ZD | 9.6 | | | | | | | | | LQW15AN9N6J0ZD | 2.5 | | | | | | | | <u>l</u> | | | l | 1 | | l | I | 1 | | COW15ANSNTGOZD COW15ANSNTGOZD COW15ANSNTHOZD S.7 COW15ANSNTHOZD S.7 COW15ANSNTHOZD S.7 COW15ANSNTHOZD S.7 COW15ANSNSHOZD S.8 COW15ANSNSHOZD S.9 COW15ANSNSHOZD CO | Customer
Part Number | MURATA
Part Number | (*1) re | uctance
fer to below
mment | Q (*1)
(min.) | DC
Resistance
(*1) | Self Resonant
Frequency (*1) | Rated
Current | ESD
Rank | | | | | | | |--|-------------------------|---|---------|----------------------------------|------------------|--------------------------|---------------------------------|------------------|-------------|------|------|--|---|--|--| | LGW15AN9NT40ZD 9.7 | 1 art rumber | 1 art ramber | | | (111111.) | | (GHz min.) | (mA) | 6:25kV | | | | | | | | LOW15AN9N8GOZD LOW15AN9N8HOZD 9.8 LOW15AN9N8HOZD 9.8 LOW15AN9N8HOZD 0.9 LOW15AN9N9NBHOZD 0.9 LOW15AN9N9NBHOZD 0.17 0.1 | | LQW15AN9N7G0ZD | . , | | | , | | | | | | | | | | | LOW15AN9N8HOZD 9.8 | | LQW15AN9N7H0ZD | 9.7 | | | | | | | | | | | | | | LGW15AN9N8H0ZD 9.8 | | LQW15AN9N7J0ZD | | | | | | | | | | | | | | | LQW15AN9NBJ0ZD | | | | | | | | | | | | | | | | | LQW15AN9NBJ0ZD | | | 9.8 | | | 0.14 | | 540 | | | | | | | | | LQW15AN9N9GOZD 9.9 LQW15AN9N9GOZD LQW15AN9N9JOZD 10 LQW15AN10NIOZD 10 LQW15AN11NIOZD 11 LQW15AN11NIOZD 11 LQW15AN11NIOZD 12 LQW15AN11NIOZD 12 LQW15AN11NIOZD 12 LQW15AN13NIOZD 13 LQW15AN13NIOZD 14 LQW15AN13NIOZD 15 LQW15AN15NIOZD 15 LQW15AN15NIOZD 15 LQW15AN15NIOZD LQW15AN15NIOZD LQW15AN16NIOZD LQW15AN16NIOZD LQW15AN16NIOZD LQW15AN18NIOZD LQW15AN18NIOZD LQW15AN18NIOZD LQW15AN18NIOZD 16 LQW15AN18NIOZD LQW15AN18NIOZD LQW15AN18NIOZD LQW15AN18NIOZD LQW15AN18NIOZD LQW15AN18NIOZD LQW15AN19NIOZD LQW15AN19NIOZD LQW15AN19NIOZD LQW15AN19NIOZD LQW15AN19NIOZD LQW15AN19NIOZD LQW15AN19NIOZD LQW15AN2NIOZD LQW15AN3NIOZD L | | | | | | | | | | | | | | | | | LQW15AN9N9J0ZD | | · · | | 1 | 25 | | | | | | | | | | | | LQW15AN10NG0ZD | | • | 9.9 | | | | | | | | | | | | | | LQW15AN10NG0ZD | | | | | | | | | | | | | | | | | LQW15AN10NH0ZD | | | | | | | 5.5 | | 1 | | | | | | | | LQW15AN11NO3ZD | | | 10 | | | 0.17 | | | | | | | | | | | LQW15AN11NH0ZD | | | | | | 0.17 | | | | | | | | | | | LQW15AN11NH0ZD | | · · | | 1 | | | | | | | | | | | | | LQW15AN11NJ0ZD | | | 11 | | | | | 500 | | | | | | | | | LQW15AN12NG0ZD LQW15AN12NH0ZD LQW15AN12NH0ZD LQW15AN13NH0ZD LQW15AN13NJ0ZD LQW15AN13NJ0ZD LQW15AN15NJ0ZD LQW15AN15NJ0ZD LQW15AN15NJ0ZD LQW15AN16NJ0ZD LQW15AN16NJ0ZD LQW15AN16NJ0ZD LQW15AN16NJ0ZD LQW15AN16NJ0ZD LQW15AN16NJ0ZD LQW15AN18NJ0ZD LQW15AN18NJ0ZD LQW15AN18NJ0ZD LQW15AN19NJ0ZD LQW15AN19NJ0ZD LQW15AN19NJ0ZD LQW15AN2NJ0ZD LQW15AN3NJ0ZD LQW15AN | | | ''' | | | | | 300 | | | | | | | | | LQW15AN12NJOZD | | | | | 30 | 0.14 | | | | | | | | | | | LQW15AN12NJOZD LQW15AN13NIOZD LQW15AN13NIOZD LQW15AN15NIOZD LQW15AN15NIOZD LQW15AN15NIOZD LQW15AN15NIOZD LQW15AN16NIOZD LQW15AN16NIOZD LQW15AN16NIOZD LQW15AN16NIOZD LQW15AN18NIOZD LQW15AN18NIOZD LQW15AN18NIOZD LQW15AN18NIOZD LQW15AN18NIOZD LQW15AN18NIOZD LQW15AN18NIOZD LQW15AN19NIOZD LQW15AN19NIOZD LQW15AN2NIOZD LQW15AN3NIOZD LQW15AN3 | | | 12 | | | | | | | | | | | | | | LQW15AN13NG0ZD LQW15AN13NH0ZD LQW15AN13NH0ZD LQW15AN15NH0ZD LQW15AN15NH0ZD LQW15AN16NH0ZD LQW15AN16NH0ZD LQW15AN16NH0ZD LQW15AN16NH0ZD LQW15AN16NH0ZD LQW15AN16NH0ZD LQW15AN18NH0ZD LQW15AN18NH0ZD LQW15AN18NH0ZD LQW15AN18NH0ZD LQW15AN19NH0ZD LQW15AN19NH0ZD LQW15AN19NH0ZD LQW15AN2NH0ZD LQW15AN3NNH0ZD LQW15AN3NNH0ZD SO | | | 12 | | | | | | | | | | | | | | LQW15AN13NH0ZD | | | | | | | | | | | | | | | | | LQW15AN13NJOZD | | | 13 | | | 0.21 | 25 0.21 | | 430 | | | | | | | | LQW15AN15NGOZD | | • | 13 | | | 0.21 | 25 0.21 | 20 0.21 | | 430 | | | | | | | LQW15AN15NH0ZD | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | 5.0 | | - | | | | LQW15AN15NJ0ZD | | • | 15 | | 20 | 0.46 | 16 | 460 | 460 | | | | | | | | LQW15AN16NG0ZD | | | 15 | | 30 | 0.16 | | | | | | | | | | | LQW15AN16NH0ZD | | | | ⊣ | | | | 4 | | | | | | | | | LQW15AN16NJOZD | | | 40 | | | 0.04 | | | | | | | | | | | LQW15AN18NG0ZD | | | 16 | G:+2% | | 0.24 | | | | | | | | | | | LQW15AN18NHOZD 18 | | | | | | | | | 6 | | | | | | | | LQW15AN18NJ0ZD | | | 40 | J:±5% | | | | | | | | | | | | | LQW15AN19NG0ZD | | • | 18 | | 0.27 | | | 4.5 | 4.0 | | | | | | | | LQW15AN19NHOZD 19 | | | | | | | | | 370 | | | | | | | | LQW15AN19NJ0ZD | | • | | | | 0. | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | | | | | | LQW15AN20NG0ZD | | | 19 | | | | | 0.27 | | | | | | | | | LQW15AN20NH0ZD 20 | | | | | | _ | | | | | | | | | | | LQW15AN20NJ0ZD | | | | | | | | | | | | | | | | | LQW15AN22NGOZD LQW15AN22NJOZD 22 LQW15AN23NGOZD LQW15AN23NJOZD 23 LQW15AN23NJOZD LQW15AN24NJOZD LQW15AN24NJOZD LQW15AN24NJOZD LQW15AN24NJOZD LQW15AN27NGOZD LQW15AN27NHOZD 27 LQW15AN27NJOZD LQW15AN27NJOZD LQW15AN27NJOZD LQW15AN30NGOZD LQW15AN30NGOZD LQW15AN30NHOZD 30 0.58 3.3 270 | | | 20 | | | | | | | | | | | | | | LQW15AN22NG0ZD | | | | | | | 4.0 | | 4 | | | | | | | | LQW15AN22NJ0ZD | | | | | | | | | | | | | | | | | LQW15AN23NG0ZD | | | 22 | | | | 3.8 | | | | | | | | | | LQW15AN23NG0ZD | | | | | 25 | 0.30 | | 310 | | | | | | | | | LQW15AN23NJ0ZD | | | | | | 5.00 | | 5.0 | | | | | | | | | LQW15AN24NG0ZD LQW15AN24NH0ZD 24 LQW15AN24NJ0ZD LQW15AN27NG0ZD LQW15AN27NH0ZD 27 LQW15AN27NJ0ZD LQW15AN30NG0ZD LQW15AN30NG0ZD LQW15AN30NH0ZD 30 0.52 3.5 280 | | • | 23 | | | | | | | | | | | | | | LQW15AN24NH0ZD 24 LQW15AN24NJ0ZD 0.52 LQW15AN27NG0ZD 27 LQW15AN27NH0ZD 27 LQW15AN27NJ0ZD 0.58 LQW15AN30NH0ZD 30 LQW15AN30NH0ZD 30 | | | | | | | | | 1 | | | | | | | | LQW15AN24NJ0ZD LQW15AN27NG0ZD LQW15AN27NH0ZD LQW15AN27NJ0ZD LQW15AN30NG0ZD LQW15AN30NH0ZD 30 0.52 3.5 280 0.52 3.5 280 0.52 3.5 280 0.52 3.5 280 0.52 3.5 280 0.52 3.5 280 0.52 3.5 280 0.52 3.5 280 0.52 3.5 280 0.52 3.5 280 0.52 3.5 280 0.52 3.5 280 0.52 3.5 280 0.52 3.5 280 0.52 3.5 280 0.52 3.5 280 0.52 3.5 280 0.52 3.5 280 | | LQW15AN24NG0ZD | | | | | | | | | | | | | | | LQW15AN27NG0ZD | | LQW15AN24NH0ZD | 24 | | | | | | | | | | | | | | LQW15AN27NG0ZD LQW15AN27NH0ZD 27 LQW15AN27NJ0ZD LQW15AN30NG0ZD LQW15AN30NH0ZD 30 0.58 3.3 270 | | LQW15AN24NJ0ZD | | | | 0.52 | 3.5 | 280 | | | | | | | | | LQW15AN27NJ0ZD LQW15AN30NG0ZD LQW15AN30NH0ZD 30 0.58 3.3 270 | | LQW15AN27NG0ZD | | | | 0.02 | 3.5 | 200 | | | | | | | | | LQW15AN30NG0ZD 0.58 3.3 270 | | LQW15AN27NH0ZD | 27 | | | | | | | | | | | | | | LQW15AN30NH0ZD 30 0.58 3.3 270 | | LQW15AN27NJ0ZD | | | | | | | | | | | | | | | | | LQW15AN30NG0ZD | | | | | | | | | | | | | | | LQW15AN30NJ0ZD | | LQW15AN30NH0ZD | 30 | | | 0.58 | 3.3 | 270 | | | | | | | | | | | LQW15AN30NJ0ZD | | | | | | | | | | | | | | | LQW15AN33NG0ZD | | LQW15AN33NG0ZD | | 1 | | | | | 1 | | | | | | | | LQW15AN33NH0ZD 33 0.63 3.2 260 | | LQW15AN33NH0ZD | 33 | | | 0.63 | 3.2 | 260 | | | | | | | | | LQW15AN33NJ0ZD | | LQW15AN33NJ0ZD | | | | | | | | | | | | | | | Customer
Part Number | MURATA
Part Number | (*1) re | uctance
fer to below
mment | Q (*1)
(min.) | DC
Resistance
(*1) | Self Resonant
Frequency (*1) | Rated
Current | ESD
Rank | | | | | | | | | | |-------------------------|--|------------|----------------------------------|------------------|--------------------------|---------------------------------|------------------|-------------|--|--|------|-----|-----|------|-----|-----|--| | | | (nH) | Tolerance | (111111.) | (Ω max.) | (GHz min.) | (mA) | 6:25kV | | | | | | | | | | | | LQW15AN36NG0ZD
LQW15AN36NH0ZD | 36 | | | 0.63 | 3.1 | 260 | | | | | | | | | | | | | LQW15AN36NJ0ZD
LQW15AN39NG0ZD
LQW15AN39NH0ZD | 39 | | | | | | | | | | | | | | | | | | LQW15AN39NJ0ZD
LQW15AN40NG0ZD | | | | | | | | | | | | | | | | | | | LQW15AN40NH0ZD
LQW15AN40NJ0ZD | 40 | | | 0.70 | 3.0 | 250 | | | | | | | | | | | | | LQW15AN43NG0ZD
LQW15AN43NH0ZD
LQW15AN43NJ0ZD | 43 | G:±2% | 25 | | | | | | | | | | | | | | | | LQW15AN47NG0ZD
LQW15AN47NH0ZD
LQW15AN47NJ0ZD | 47 | 6 | | 1.08 | 2.9 | 210 | | | | | | | | | | | | | LQW15AN51NG0ZD
LQW15AN51NH0ZD
LQW15AN51NJ0ZD | 51 | | | | 2.85 | | 6 | | | | | | | | | | | | LQW15AN56NG0ZD
LQW15AN56NH0ZD
LQW15AN56NJ0ZD | 56 | | | | | | | | | 1.17 | 2.8 | 200 | 0 | | | | | | LQW15AN62NG0ZD
LQW15AN62NH0ZD
LQW15AN62NJ0ZD | 62 | | | 1.82 | 2.6 | 145 | | | | | | | | | | | | | LQW15AN68NG0ZD
LQW15AN68NJ0ZD | 68 | | | 1.96 | 2.5 | 140 | | | | | | | | | | | | | LQW15AN72NG0ZD
LQW15AN72NJ0ZD | 72 | | | 2.10 | 2.0 | 135 | | | | | | | | | | | | | LQW15AN75NG0ZD
LQW15AN75NJ0ZD | 75 | G:±2%
J:±5% | 20 | | 2.4 | | | | | | | | | | | | | | LQW15AN82NG0ZD
LQW15AN82NJ0ZD | 82 | | | 2.24 | 2.3 | 130 | | | | | | | | | | | | | LQW15AN91NG0ZD
LQW15AN91NJ0ZD | 91 | | | | | | | | | | | | 2.38 | 2.1 | 125 | | | | LQW15ANR10J0ZD
LQW15ANR12J0ZD | 100
120 | J:±5% | | 2.52
2.66 | 1.5
1.0 | 120
110 | | | | | | | | | | | (*1) ### 4. Testing Conditions 《Unless otherwise specified》 Temperature : Ordinary Temperature / 15°C to 35°C Humidity : Ordinary Humidity / 25%(RH) to 85%(RH) 《In case of doubt》 Temperature : 20°C±2°C Humidity : 60%(RH) to 70%(RH) Atmospheric Pressure : 86kPa to 106 kPa #### SpecNo.JELF243A-9114F-01 ## Reference Only ### 5. Appearance and Dimensions #### *Dimension of W | Inductance | W (in mm) | |------------|-----------| | 1N5~23N | 0.6±0.1 | | 24N~R12 | 0.5±0.1 | ■Unit mass (Typical value) 0.0008g (in mm) #### **6.Electrical Performance** | | icai i eriorillance | | | |-----|-----------------------------------|---|---| | No. | Item | Specification | Test Method | | 6.1 | Inductance | Inductance shall meet item 3. | Measuring Equipment: KEYSIGHT E4991A or equivalent Measuring Frequency: <inductance> 100MHz</inductance> | | 6.2 | Q | Q shall meet item 3. | Measuring Method : See the endnote. <electrical :="" inductance="" measuring="" method="" of="" performance="" q=""></electrical> | | 6.3 | DC Resistance | DC Resistance shall meet item 3. | Measuring Equipment : Digital multi meter | | 6.4 | Self Resonant
Frequency(S.R.F) | S.R.F shall meet item 3. | Measuring Equipment : KEYSIGHT N5230A or equivalent | | 6.5 | Rated Current | Self temperature rise shall be limited to 20°C max. | The rated current is applied. | # 7. Q200 Requirement 7.1.Performance (based on Table 5 for Magnetics(Inductors / Transformer) AEC-Q200 Rev.D issued June 1. 2010 | | A | AEC-Q200 | Murata Specification / Doviation | | | | |----|---------------------------------|--|--|--|--|--| | No | Stress | Test Method | Murata Specification / Deviation | | | | | 3 | High
Temperature | 1000hours at 125 deg C
Set for 24hours at room | Meet Table A after testing. <u>Table A</u> | | | | | | Exposure | temperature, then measured. | Appearance No damage | | | | | | | | Inductance change (at 100MHz) Within ±5% | | | | | 4 | Temperature
Cycling | 1000cycles -40 deg C to +125 deg C Set for 24hours at room temperature,then measured. | Meet Table A after testing. | | | | | 7 | Biased Humidity | 1000hours at 85 deg C, 85%RH unpowered. | Meet Table A after testing. | | | | | 8 | Operational Life | Apply 125 deg C 1000hours
Set for 24hours at room
temperature, then measured | Meet Table A after testing. | | | | | 9 | External Visual | Visual inspection | No abnormalities | | | | | 10 | Physical Dimension | Meet ITEM 5
(Style and Dimensions) | No defects | | | | | 12 | Resistance
to Solvents | Per
MIL-STD-202
Method 215 | Not Applicable | | | | | 13 | Mechanical Shock | Per MIL-STD-202
Method 213
Condition C: 100g's(0.98N),
6ms, Half sine, 12.3ft / s | Meet Table A after testing. | | | | | 14 | Vibration | 5g's (0.049N) for 20 minutes,
12cycles each of 3 orientations
Test from 10-2000Hz. | Meet Table A after testing. | | | | | 15 | Resistance
to Soldering Heat | No-heating
Solder temperature
260C+/-5 deg C
Immersion time 10s | Pre-heating: 150C + / -10 deg C, 60s to 90s Meet Table A after testing. | | | | | 17 | ESD | Per AEC-Q200-002 | ESD Rank : Refer to Item 3. Rating.
Meet Table A after testing | | | | | 18 | Solderbility | Per J-STD-002 | Method b : Not Applicable
95% of the terminations is to be soldered.
(Except exposed wire) | | | | | 19 | Electrical
Characterization | Measured : Inductance | No defects | | | | | 20 | Flammability | Per UL-94 | Not Applicable | | | | | | A | AEC-Q200 | Murata Specification / Deviation | | | |----|-------------------|---|--|--|--| | No | Stress | Test Method | - Widiata Specification / Deviation | | | | 21 | Board Flex | Epoxy-PCB(1.6mm) Deflection 2mm(min) Holding time 60s | Meet Table B after testing. Table B Appearance No damage DC resistance change Within ±10% | | | | 22 | Terminal Strength | Per AEC-Q200-006
A force of 17.7N
for 60s | No defects
Murata Deviation Request : 5N / 60s | | | #### 8. Specification of Packaging 8.1 Appearance and Dimensions of paper tape (8mm-wide) | Inductance | A* (mm)
(Tolerance ±0.03) | B* (mm)
(Tolerance ±0.03) | |--|------------------------------|------------------------------| | 1N5, 2N4~2N8, 3N9~4N8, 5N8~6N8, 8N2~9N9, 11N, 12N, 15N | 0.69 | 1.18 | | 1N6~1N8, 2N9, 3N0, 3N1, 3N2, 4N9~5N1, 6N9-7N5, 10N, 13N, 16N~23N, R10, R12 | 0.66 | 1.18 | | 24N~91N | 0.64 | 1.18 | *Typical value #### 8.2 Specification of Taping - (1) Packing quantity (standard quantity) - 10,000 pcs. / reel - (2) Packing Method Products shall be packed in the cavity of the base tape and sealed by Cover tape. (3) Sprocket hole The sprocket holes are to the right as the tape is pulled toward the user. (4) Spliced point Base tape and Cover tape has no spliced point. (5) Missing components number Missing components number within 0.1% of the number per reel or 1 pc., whichever is greater, and are not continuous. The Specified quantity per reel is kept. #### 8.3 Pull Strength | Cover tape | 5N min. | |------------|---------| |------------|---------| #### 8.4 Peeling off force of cover tape | Speed of Peeling off | 300mm/min | |----------------------|---| | Peeling off force | 0.1N to 0.6N (minimum value is typical) | #### 8.5 Dimensions of Leader-tape, Trailer and Reel There shall be leader-tape (cover tape and empty tape) and trailer-tape (empty tape) as follows. #### 8.6 Marking for reel Customer part number, MURATA part number, Inspection number (*1), RoHS marking (*2), Quantity etc · · · *1) <Expression of Inspection No.> $\frac{\square \square}{(1)} \frac{0000}{(2)} \frac{\times \times \times}{(3)}$ (1) Factory Code (2) Date First digit : Year / Last digit of year Second digit : Month / Jan. to Sep. \rightarrow 1 to 9, Oct. to Dec. \rightarrow O, N, D Third, Fourth digit : Day (3) Serial No. *2) <Expression of RoHS marking> ROHS $-\underline{Y}$ ($\underline{\triangle}$) (1) (2) - (1) RoHS regulation conformity - (2) MURATA classification number #### 8.7 Marking for Outside package (corrugated paper box) Customer name, Purchasing order number, Customer part number, MURATA part number, RoHS Marking (*2), Quantity, etc \cdots #### 8.8. Specification of Outer Case | Outer Cas | se Dimensi | ons (mm) | Standard Reel Quantity | |-----------|------------|----------|------------------------| | W | D | Н | in Outer Case (Reel) | | 186 | 186 | 93 | 5 | * Above Outer Case size is typical. It depends on a quantity of an order. #### 9. A Caution #### 9.1 Limitation of Applications Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property. - (1) Aircraft equipment - (6) Transportation equipment (trains, ships, etc.) - (2) Aerospace equipment - (7) Traffic signal equipment - (3) Undersea equipment - (8) Disaster prevention / crime prevention equipment - (4) Power plant control equipment - (9) Data-processing equipment - (5) Medical equipment - (10) Applications of similar complexity and /or reliability requirements to the applications listed in the above #### 9.2 Caution (Rating) Do not exceed maximum rated current of the product. Thermal stress may be transmitted to the product and short / open circuit of the product or falling off the product may be occurred. #### 9.3 Fail-safe Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product. #### 10. Notice Products can only be soldered with reflow. This product is designed for solder mounting. Please consult us in advance for applying other mounting method such as conductive adhesive. #### 10.1 Land pattern designing Recommended land patterns for reflow soldering are as follows: These have been designed for Electric characteristics and solderability. Please follow the recommended patterns. Otherwise, their performance which includes electrical performance or solderability may be affected, or result to "position shift" in soldering process. #### 10.2 Flux, Solder · Use rosin-based flux. Includes middle activator equivalent to 0.06(wt)% to 0.1(wt) % Chlorine. Don't use highly acidic flux with halide content exceeding 0.2(wt) % (chlorine conversion value). Don't use water-soluble flux. - · Use Sn-3.0Ag-0.5Cu solder. - Standard thickness of solder paste : $100 \,\mu$ m to $150 \,\mu$ m. #### 10.3 Reflow soldering conditions Pre-heating should be in such a way that the temperature difference between solder and product surface is limited to 150°C max. Cooling into solvent after soldering also should be in such a way that the temperature difference is limited to 100°C max. Insufficient pre-heating may cause cracks on the product, resulting in the deterioration of products quality. - Standard soldering profile and the limit soldering profile is as follows. The excessive limit soldering conditions may cause leaching of the electrode and / or resulting in the deterioration of product quality. - · Reflow soldering profile | | Standard Profile | Limit Profile | | |------------------|----------------------|-----------------------|--| | Pre-heating | 150°C~180°C | C 、90s±30s | | | Heating | above 220°C, 30s~60s | above 230°C, 60s max. | | | Peak temperature | 245°C±3°C | 260°C,10s | | | Cycle of reflow | 2 times | 2 times | | #### 10.4 Reworking with soldering iron The following conditions must be strictly followed when using a soldering iron. | Pre-heating | 150°C,1 min | |-----------------------|-------------| | Tip temperature | 350°C max. | | Soldering iron output | 80W max. | | Tip diameter | φ3mm max. | | Soldering time | 3 (+1,-0)s | | Time | 2 times | Note: Do not directly touch the products with the tip of the soldering iron in order to prevent the crack on the products due to the thermal shock. #### 10.5 Solder Volume - Solder shall be used not to be exceeded the upper limits as shown below. - Accordingly increasing the solder volume, the mechanical stress to Chip is also increased. Exceeding solder volume may cause the failure of mechanical or electrical performance. #### 10.6 Product's location The following shall be considered when designing and laying out P.C.B.'s. (1) P.C.B. shall be designed so that products are not subject to the mechanical stress due to warping the board. #### [Products direction] Products shall be located in the sideways direction (Length:a < b) to the mechanical stress. (2) Components location on P.C.B. separation. It is effective to implement the following measures, to reduce stress in separating the board. It is best to implement all of the following three measures; however, implement as many measures as possible to reduce stress. | Contents of Measures | Stress Level | | |--|--------------|--| | (1) Turn the mounting direction of the component parallel to the board separation surface. | A > D*1 | | | (2) Add slits in the board separation part. | A > B | | | (3) Keep the mounting position of the component away from the board separation surface. | A > C | | *1 A > D is valid when stress is added vertically to the perforation as with Hand Separation. If a Cutting Disc is used, stress will be diagonal to the PCB, therefore A > D is invalid. (3) Mounting Components Near Screw Holes When a component is mounted near a screw hole, it may be affected by the board deflection that occurs during the tightening of the screw. Mount the component in a position as far away from the screw holes as possible. #### 10.7 Cleaning Conditions Products shall be cleaned on the following conditions. - (1) Cleaning temperature shall be limited to 60°C max. (40°C max for IPA) - (2) Ultrasonic cleaning shall comply with the following conditions with avoiding the resonance phenomenon at the mounted products and P.C.B. Power: 20 W / I max. Frequency: 28kHz to 40kHz Time: 5 min max. - (3) Cleaner - 1. Alcohol type cleaner Isopropyl alcohol (IPA) 2. Aqueous agent PINE ALPHA ST-100S (4) There shall be no residual flux and residual cleaner after cleaning. In the case of using aqueous agent, products shall be dried completely after rinse with de-ionized water in order to remove the cleaner. (5) Other cleaning Please contact us. #### 10.8 Resin coating The inductance value may change due to high cure-stress of resin to be used for coating/molding products. An open circuit issue may occur by mechanical stress caused by the resin, amount/cured shape of resin, or operating condition etc. Some resin contains some impurities or chloride possible to generate chlorine by hydrolysis under some operating condition may cause corrosion of wire of coil, leading to open circuit. So, please pay your careful attention when you select resin in case of coating/molding the products with the resin. Prior to use the coating resin, please make sure no reliability issue is observed by evaluating products mounted on your board. #### 10.9 Caution for use - Sharp material such as a pair of tweezers or other material such as bristles of cleaning brush , shall not be touched to the winding portion to prevent the breaking of wire. - · Mechanical shock should not be applied to the products mounted on the board to prevent the breaking of the core. #### 10.10 Notice of product handling at mounting In some mounting machines, when picking up components support pin pushes up the components from the bottom of base tape. In this case, please remove the support pin. The support pin may damage the components and break wire. In rare case, the laser recognition can not recognize this component. Please contact us when you use laser recognition. (There is no problem with the permeation and reflection type.) #### 10.11 Handling of a substrate After mounting products on a substrate, do not apply any stress to the product caused by bending or twisting to the substrate when cropping the substrate, inserting and removing a connector from the substrate or tightening screw to the substrate. Excessive mechanical stress may cause cracking in the product. Bending Twisting #### 10.12 Storage and Handing Requirements (1) Storage period Use the products within 12 months after delivered. Solderability should be checked if this period is exceeded. - (2) Storage conditions - Products should be stored in the warehouse on the following conditions. Temperature : -10°C to 40°C Humidity : 15% to 85% relative humidity No rapid change on temperature and humidity - Don't keep products in corrosive gases such as sulfur, chlorine gas or acid, or it may cause oxidization of electrode, resulting in poor solderability. - Products should not be stored on bulk packaging condition to prevent the chipping of the core and the breaking of winding wire caused by the collision between the products. - Products should be stored on the palette for the prevention of the influence from humidity, dust and so on. - Products should be stored in the warehouse without heat shock, vibration, direct sunlight and so on. - (3) Handling Condition Care should be taken when transporting or handling product to avoid excessive vibration or mechanical shock. #### 11. **A** Note - (1) Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product. - (2) You are requested not to use our product deviating from the reference specifications. - (3) The contents of this reference specification are subject to change without advance notice. Please approve our product specifications or transact the approval sheet for product specifications before ordering. #### -< Electrical Performance : Measuring Method of Inductance / Q > - (1) Residual elements and stray elements of test fixture can be described by F-parameter shown in following. (2) The impedance of chip coil Zx and measured value Zm can be described by input/output current/voltage. $$Zm = \frac{V_1}{I_1} , \qquad Zx = \frac{V_2}{I_2}$$ (3) Thus, the relation between Zx and Zm is following; Zsm: measured impedance of short chip Zss: residual impedance of short chip (0.556nH) Yom: measured admittance when opening the fixture (4) Lx and Qx shall be calculated with the following equation. $$Lx = \begin{array}{c} \frac{Im(Zx)}{2\pi f}, \quad Qx = \frac{Im(Zx)}{Re(Zx)} \\ \end{array} \begin{array}{c} Lx: \text{ Inductance of chip coil} \\ Qx: Q \text{ of chip coil} \\ f: \text{ Measuring frequency} \end{array}$$