

HS-ENG09xB

嵌入式微型网关服务器

数据手册

Version 4.0

成都浩然电子有限公司

2018-04

HS-ENG09xB 嵌入式微型网关服务器数据手册 V4.0

目录

版	本信息	2
1.	简介	3
	1.1 特性	3
	1.2 实物图	3
2.	尺寸及引脚	5
	2.1 HS-ENG091B 外形及尺寸	5
	2.2 HS-ENG092B 外形及尺寸	6
	2.3 HS-ENG093B 外形及尺寸	7
	2.4 HS-ENG091B 引脚定义	8
	2.5 HS-ENG092B 引脚定义	9
	2.6 HS-ENG093B 引脚定义	12
	2.7 其它说明	13
3.	参数设置	14
	3.1 进入参数配置状态	14
	3.2 AT 指令集	15
	3.3 AT 指令详解	16
	3.4 通过串行端口设置参数	23
4.	运行	24
	4.1 进入工作状态	24
	4.2 检查参数设置和硬件连接	24
	4.3 端口的三种工作模式	24
	4.3.1 TCP 服务器模式	25
	4.3.2 TCP 客户端模式	25
	4.3.3 UDP 模式	26
5.	动态获取 IP 地址 (DHCP)	
	通过网络设置参数	
7.	电参数	32

特别提示:

HS-ENG09xB 有 5.0v 和 3.3v 两种工作电压,订货时需申明模块的工作电压。

电话:028-86127089 邮件:<u>support@hschip.com</u> 网址:<u>http://www.hschip.com.cn</u>

第1页

HS-ENG09xB 嵌入式微型网关服务器数据手册 V4.0

版本信息

版本	修改内容				
V3.2	网络运行监控				
V3.3	1. 增加 HS-ENG093B 的内容				
	2. 修改 ATUB 参数,可设置 ATUB=9 为 300,000bps 波特率				
V4.0	根据市场客户反映,以下功能没有太多的使用价值,因此在新版本中删掉,以提高				
	系统运行效率				
	1. 去掉 UDP_MODE3 模式				
	2. 去掉在线监控模式				
	3. 去掉 PPPOE 功能				

电话:028-86127089 邮件:<u>support@hschip.com</u> 网址:<u>http://www.hschip.com.cn</u>

第2页

1. 简介

1.1 特性

- 1. 支持 TCP 服务器、TCP 客户端和 UDP 通信,支持 UDP 的组播功能;
- 2. 10BaseT/100BaseTX 自动适应,也可通过配置进行选择;
- 3. 支持 DHCP 协议,可以从 DHCP 服务器获取动态 IP 地址和网络参数;
- 4. 以太网连接 LED 指示、数据通信 LED 指示, 电平输出指示以太网连接状态;
- 5. UART 通信数据格式可自由设定, UART 波特率从 1,200bps 到 300,000bps;
- 6. UART 的信号是 5V (或 3.3V)的 CMOS 电平;
- 7. 带 RS-485 的收发控制输出,可外接 RS-485 总线接口;
- 8. 模块运行状态输出指示,可供外部 CPU 检查 HS-ENG09xB 的运行情况;
- 9. 内部保存通信参数,不需要每次上电后重新设置通信参数;
- 10. 可通过 UART 接口和网络接口对 HS-ENG09xB 进行配置;
- 11. 5V (3.3V)直流供电,电流消耗≤140mA;
- **12**. **HS-ENG091B/HS-ENG093B** 的 **RJ-45** 座内部嵌入网络变压器,网线可以直接插入,使用方便:
- 13. HS-ENG092B 自带有网络变压器隔离输入/输出,只需要外接一个 RJ-45 座,这种方式更方便用户产品的结构设计。

1.2 实物图

HS-ENG091B 的实物图如图 1.1 所示。由于模块已经有 RJ-45 接口,因此使用非常方便。

图 1.1 HS-ENG091B 实物图

电话:028-86127089 邮件:<u>support@hschip.com</u> 网址:<u>http://www.hschip.com.cn</u>

HS-ENG09xB 嵌入式微型网关服务器数据手册 V4.0

HS-ENG092B 的实物图如图 1.2 所示。与 HS-ENG091B 相比,HS-ENG092B 没有 RJ-45 接口,但由于已经有网络变压器,因此只需要外接 RJ-45,在某些产品应用中,它具有更灵活的安装结构。

图 1.2 HS-ENG092B 实物图

图 1.3 HS-ENG093B 实物图

电话:028-86127089 邮件:<u>support@hschip.com</u> 网址:<u>http://www.hschip.com.cn</u>

第4页

2. 尺寸及引脚

2.1 HS-ENG091B 外形及尺寸

HS-ENG091B的外形和尺寸与HS-ENG091完全相同,引脚定义也基本完全兼容。如图2.1所示, 单位: mm

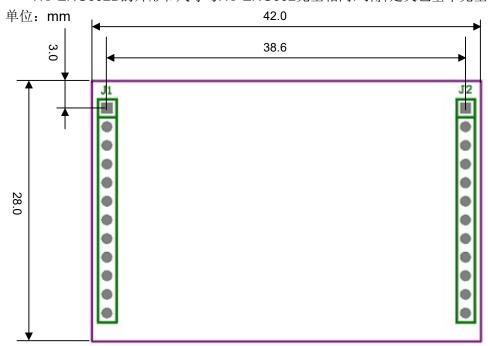



图2.1 HS-ENG091B尺寸图

电话:028-86127089 邮件: support@hschip.com 网址:http://www.hschip.com.cn 第5页

2.2 HS-ENG092B 外形及尺寸

HS-ENG092B的外形和尺寸与HS-ENG092完全相同,引脚定义也基本完全兼容。如图2.2所示。

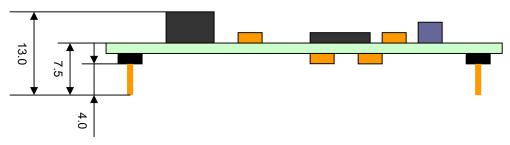


图2.2 HS-ENG092B尺寸图

电话:028-86127089 邮件: <u>support@hschip.com</u> 网址: http://www.hschip.com.cn 第6页

2.3 HS-ENG093B 外形及尺寸

HS-ENG093B 外形及尺寸如图 2.3 所示。单位为 mm。

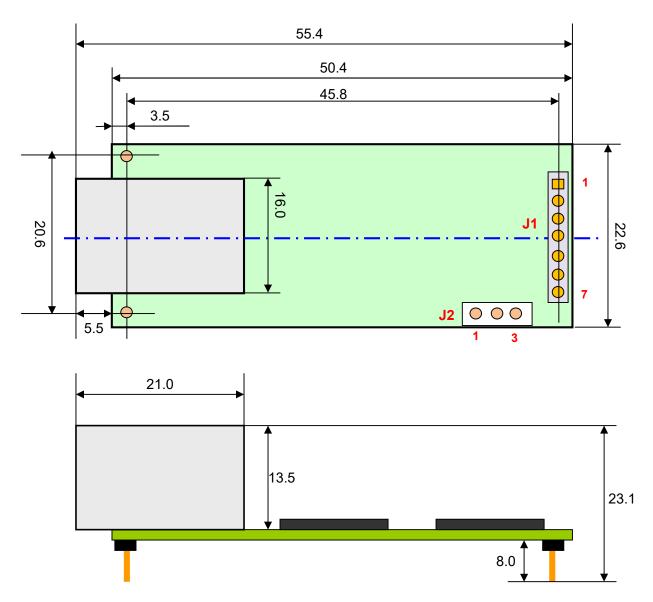


图 2.3 HS-ENG093B 尺寸图

J1 和 J2 均为 2.54mm 间距的单排针。一般地,仅 J1 引出线来,J2 没有引出来,用户根据自己的需要再引线出来。

RJ-45 两则的两个引脚没有连接任何信号,仅在安装时作支撑的作用。

电话:028-86127089 邮件:<u>support@hschip.com</u> 网址:<u>http://www.hschip.com.cn</u>

©Copyright 2008. All rights reserved.

第7页

2.4 HS-ENG091B 引脚定义

HS-ENG091B引脚排列如图2.4所示。

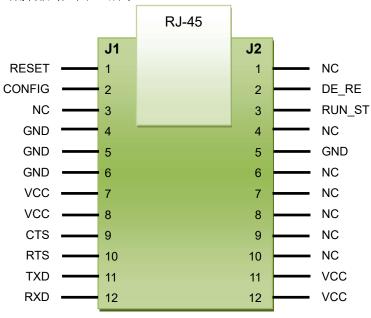


图2.4 引脚排列示意图

J1是12引脚的排针,脚间距为2.54mm。引脚的定义如表2.1所示。

表2.1

引脚	定义	输入/输出	说明
			硬件复位,低电平有效。为了可靠复位,低电平的宽度应大于50us。
1	RESET	输入	HS-ENG091B内部复位电路,如果不需要另外引入外部复位,该引脚可
			以悬空
			置HS-ENG091B为参数配置状态,该引脚信号只有在上电或RESET硬
			件复位时有效
2	CONFIG	输入	将CONFIG置为低电平,上电或复位完成后,HS-ENG091B进入参数配
			置状态
			CONFIG引脚内部带上拉电阻,当该引脚悬空时,HS-ENG091B上电或
			复位后进入正常运行状态
3	NC		未定义,悬空
4、5、6	GND	电源地	电源地
7、8	VCC	电源	电源,5V(或3.3V)供电,订货时需说明工作电压
9	CTS	输入	清除发送,低电平有效。CMOS (TTL)电平
10	RTS	输出	请求发送,低电平有效。CMOS (TTL)电平
11	TXD	输出	UART输出,CMOS (TTL)电平
12	RXD	输入	UART输入,CMOS (TTL)电平

电话:028-86127089 邮件:<u>support@hschip.com</u> 网址:<u>http://www.hschip.com.cn</u>

HS-ENG09xB 嵌入式微型网关服务器数据手册 V4.0

J2也是12引脚的排针,脚间距为2.54mm。引脚的定义如表2.2所示。

表2.2

引脚	定义	输入/输出	说明
1	NC		未定义,悬空
2	DE_RE	输出	RS-485输入/输出控制,见图2.9所示
			运行状态输出
			在TCP模式,当建立了TCP连接,RUN_ST输出低电平,否则输出高电平
3	RUN_ST	输出	在UDP模式,当 UDP端口准备就绪,RUN_ST输出低电平,否则输出高
			电平
			只有当RUN_ST输出低电平时,才能进行数据通信
4	NC		未定义,悬空
5	GND	电源地	电源地
6、7	NC		未定义,悬空
8、9、10	INC		· 木化义, 总工
11, 12	VCC	电源	电源,5V (3.3V)供电,订货时需说明工作电压

2.5 HS-ENG092B 引脚定义

HS-ENG092B的引脚排列示意如图2.5所示。

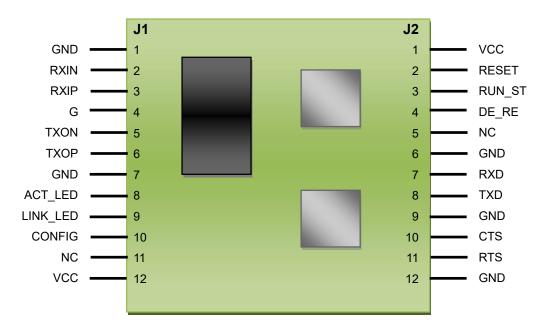


图2.5 HS-ENG092B引脚排列示意图

电话: 028-86127089 邮件: <u>support@hschip.com</u> 网址:http://www.hschip.com.cn 第9页

HS-ENG09xB 嵌入式微型网关服务器数据手册 V4.0

J1是12引脚的排针,脚间距为2.00mm。引脚的定义如表2.3所示。

表2.3

引脚	定义	输入/输出	说明
1	GND	电源地	电源地
2	RXIN	输入	以太网信号输入负极
3	RXIP	输入	以太网信号输入正极
4	G	保护地	通过1000p/400V电容与大地连接,一般可悬空
5	TXON	输出	以太网信号输出负极
6	TXOP	输出	以太网信号输出正极
7	GND	电源地	电源地
8	ACT_LED	输出	以太网数据指示,低电平有效,可连接LED指示灯
9	LINK_LED	输出	以太网连接指示,低电平有效,可连接LED指示灯
	10 CONFIG	CONFIG 输入	置HS-ENG092B为参数配置状态,该引脚信号只有在上电过程或RESET硬件复位时有效
10			将CONFIG置为低电平,上电或复位完成后,HS-ENG092B进入参数配置状态
			CONFIG引脚内部带上拉电阻,当该引脚悬空时,HS-ENG092B上电或 复位后进入正常运行状态
11	NC		未定义
12	VCC	电源	电源,5V (或3.3V)供电,订货时需说明工作电压

J2是12引脚的排针,脚间距为2.0mm。引脚的定义如表2.4所示。

表2.4

引脚	定义	输入/输出	说明
1	VCC	电源	电源,5V(或3.3V)供电
2	RESET	输入	硬件复位,低电平有效。为了可靠复位,低电平的宽度应大于50us。内
	RESET	1削八	部带上拉电阻
			运行状态输出
			在TCP模式,当建立了TCP连接,RUN_ST输出低电平,否则输出高电平
3	RUN_ST	输出	在UDP模式,当 UDP端口准备就绪,RUN_ST输出低电平,否则输出高
			电平
			只有当RUN_ST输出低电平时,才能进行数据通信
4	DE_RE	输出	RS-485输入/输出控制,见图2.9所示
5	NC		未定义
6	GND	电源地	电源地
7	RXD	输入	UART输入。CMOS (TTL)电平
8	TXD	输出	UART输出。CMOS (TTL)电平
9	GND	电源地	电源地
10	CTS	输入	清除发送,低电平有效。CMOS (TTL)电平
11	RTS	输出	请求发送,低电平有效。CMOS (TTL)电平
12	GND	电源地	电源地

电话:028-86127089 邮件:<u>support@hschip.com</u> 网址:<u>http://www.hschip.com.cn</u>

©Copyright 2008. All rights reserved.

第 10 页

HS-ENG09xB 嵌入式微型网关服务器数据手册 V4.0

由于HS-ENG092B的以太网信号已经通过变压器耦合输出,因此,HS-ENG092B直接与RJ-45的连接。接线如图2.6所示。

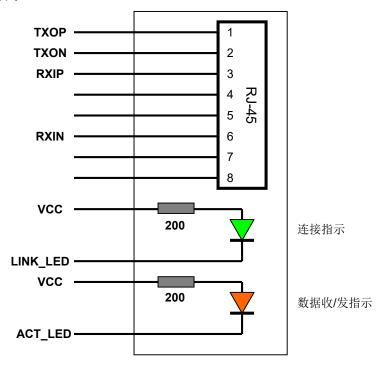


图2.6 HS-ENG092B与RJ-45的连接

图2.7为RJ-45的PCB引脚定义图

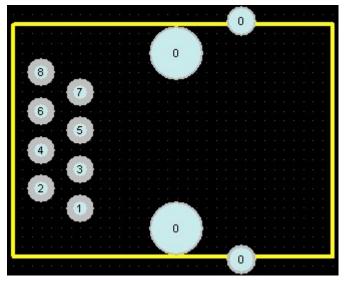
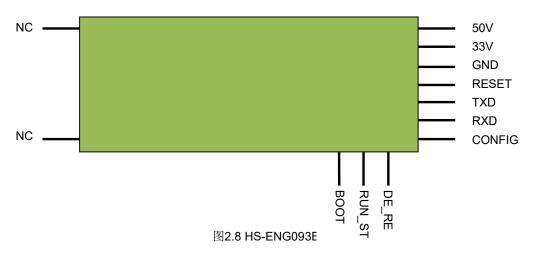



图2.7 RJ-45引脚定义

电话:028-86127089 邮件:<u>support@hschip.com</u> 网址:<u>http://www.hschip.com.cn</u>

2.6 HS-ENG093B 引脚定义

HS-ENG093B引脚排列如图2.8所示。

HS-ENG093B 的 J1 引脚定义如表 2.5 所示。

表 2.5

引脚	定义	输入/输出	说明
1	50V	电源	5V电源输入,与33V引脚不能同时使用
2	33V	电源	3.3V电源输入,与50V引脚不能同时使用
3	GND	电源地	电源地
4	RESET	输入	硬件复位,低电平有效。为了可靠复位,低电平的宽度应大于50us。内部带上拉电阻
8	TXD	输出	UART输出。CMOS (TTL)电平
7	RXD	输入	UART输入。CMOS (TTL)电平
10	CONFIG	输入	置HS-ENG093B为参数配置状态,该引脚信号只有在上电过程或RESET硬件复位时有效将CONFIG置为低电平,上电或复位完成后,HS-ENG093B进入参数配置状态CONFIG引脚内部带上拉电阻,当该引脚悬空或置高电平时,HS-ENG093B上电或复位后进入正常运行状态

HS-ENG093B 的 J2 引脚定义如表 2.6 所示。

表 2.6

引脚	定义	输入/输出	说明
1	воот	输入	编程测试用引脚。用户使用时悬空
			运行状态输出
			在TCP模式,当建立了TCP连接,RUN_ST输出低电平,否则输出高电平
2	RUN_ST	输出	在UDP模式,当 UDP端口准备就绪,RUN_ST输出低电平,否则输出高
			电平
			只有当RUN_ST输出低电平时,才能进行数据通信
3	DE_RE	输出	RS-485输入/输出控制,见图2.9所示

NC 为未连接的引脚,仅起到模块安装支撑的作用,因此这些引脚都悬空。

电话: 028-86127089 邮件: support@hschip.com 网址: http://www.hschip.com.cn

2.7 其它说明

UART信号转换为RS-232C和RS-485电平信号的接线图如图2.9所示。

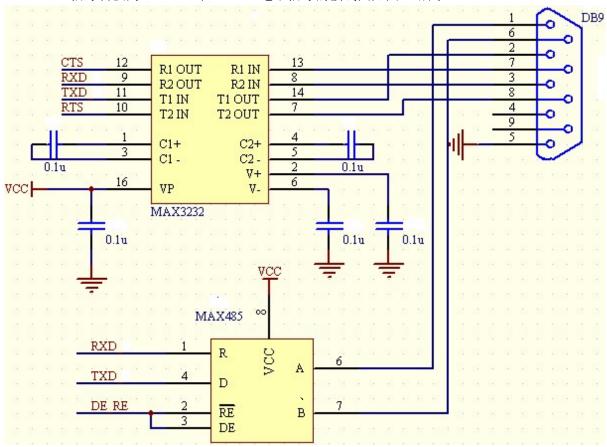


图2.9 UART信号转换为RS-232C或RS-485的接线图

当选择RS-485通信时,串行端口工作在半双工状态,串行端口接收和发送数据只能分时进行。

电话: 028-86127089 邮件: support@hschip.com 网址:http://www.hschip.com.cn

©Copyright 2008. All rights reserved.

第13页

3. 参数设置

3.1 进入参数配置状态

通过串口可以配置HS-ENG09xB。在对HS-ENG09xB进行配置以前,必须先将HS-ENG09xB 设置为参数配置状态,然后使用AT指令对HS-ENG09xB的参数进行修改。有两种方法可以将 HS-ENG09xB设置为参数配置状态。

第一种方法:

将CONFIG接地,然后接通电源,HS-ENG09xB进入参数设置状态。在参数设置状态,串口通 信的数据格式和速率是固定的:

- 波特率为9600bps
- 8位数据位
- 1位起始位,1位停止位
- 无奇偶校验位
- 无数据流控制

当HS-ENG09xB成功进入参数设置状态时,它会通过串口输出"SETUP MODE"信息。在参数设 置状态,可以使用ATDF指令将模块设置为默认的系统参数。参考ATDF指令。

在参数配置状态,CONFIG引脚的变化不会改变状态,除非重新复位。

第二种方法: 通过网络进行配置, 具体在第五章讲解。

无论采用哪一种方法,参数配置完成后,必须将CONFIG悬空或接高电平,然后重新上电运行, 新设置的参数才生效。

电话: 028-86127089 邮件: support@hschip.com 网址:http://www.hschip.com.cn

©Copyright 2008. All rights reserved.

第14页

3.2 AT 指令集

序号	AT 指令	功能
UART 対		
1	ATUB	串行异步通信速率
2	ATUD	串行异步通信数据位长度
3	ATUP	串行异步通信校验模式
4	ATUS	串行异步通信停止位长度
5	ATUT	串行异步通信数据流控制
以太网络	控制指令	
6	ATET	控制以太网物理层连接
IP 端口扩	省令	
7	ATSR	端口工作模式
8	ATGA	网关 IP
9	ATSM	子网掩码
10	ATPH	读取本机物理地址(只读),支持条件修改 MAC 地址
11	ATIP	本机 IP 地址
12	ATPT	本机端口号
13	ATDA	目的 IP 地址
14	ATDP	目的端口号
15	ATTM	时间分割
16	ATBT	字节分割
17	ATPD/ATOP	启动 DHCP 功能控制
18	ATCP	端口号控制,仅在 TCP Client 模式
其它		
19	ATEC	回显控制
20	ATIF	读取模块的版本信息 (只读)
21	ATRT	对 HS-ENG09xB 模块复位,重新启动模块
22	ATDF	装载默认的参数
23	ATRK	客户备注信息

AT 指令的使用:

1. 设置参数

如果设置 HS-ENG09xB 的某个参数值,直接输入:

ATXX=XXXX<回车>

如果参数设置成功,HS-ENG09xB 会返回"OK"

如果参数设置不成功,HS-ENG09xB 返回"BAD COMMAND OR DATA"。

电话:028-86127089 邮件:<u>support@hschip.com</u> 网址:<u>http://www.hschip.com.cn</u>

©Copyright 2008. All rights reserved.

第 15 页

HS-ENG09xB 嵌入式微型网关服务器数据手册 V4.0

2. 读取参数

如果读取 HS-ENG09xB 的某个参数,直接输入:

ATXX<回车>

如果读取参数成功,HS-ENG09xB会返回读取的参数。

如果参数读取不成功,HS-ENG09xB 返回"BAD COMMAND OR DATA"。

3.3 AT 指令详解

1. 串行异步通信速率 (ATUB)

HS-ENG09xB 与设备之间的 UART 通信支持 10 种波特率,这些值如下表。

ATUB 值	波特率
0	1,200bps
1	2,400bps
2	4,800bps
3	9,600bps (默认值)
4	19,200bps
5	38,400bps
6	57,600bps
7	115,200bps
8	230,400bps
9	300,000bps

设置为其它值时无效。例:设置通信速率为 115200bps,

ATUB=7<回车>

2. 串行异步通信数据位长度 (ATUD)

串行异步通信数据位长度对应如下:

ATUD 值	数据位长度
8	8 (默认)
9	9

电话:028-86127089 邮件:<u>support@hschip.com</u> 网址:<u>http://www.hschip.com.cn</u>

HS-ENG09xB 嵌入式微型网关服务器数据手册 V4.0

设置为其它值时无效。例,设置串口通信数据长度为8位,则:ATUD=8<回车>

注意:

当串行异步通信校验模式选择奇校验或偶校验时,要保证8位有效数据位,那么串行异步通信数据位长度必须选择9位,前8位是数据位,第9位是校验位。如果选择8位数据位,那么实际有效数据只有7位,第8位是校验位。

3. 串行异步通信校验模式 (ATUP)

串行异步通信校验模式对应如下:

ATUP 值	校验模式
0	无校验 (默认)
1	奇校验
2	偶校验

设置为其它值时无效。例,设置串口通信数据为偶校验,则

ATUP=2<回车>

如果选择奇校验或偶校验,将影响串行异步通信数据位长度,参考 ATUD 指令的说明。

4. 串行异步通信停止位 (ATUS)

串行异步通信停止位对应如下:

ATUS 值	停止位				
1	1 (默认)				
2	2				

设置为其它值时无效。例,设置串口通信数据停止位为 2 位,则: ATUS=2<回车>

5. 串行异步通信数据流控制 (ATUT)

HS-ENG09xB 的串行异步通信数据流控制方式有两种:第一种是无数据流控制;第二种是硬件数据流控制。

ATUT=0 时,取消数据流控制(默认)。如果采用 RS-485 方式,则必须设置 ATUT=0。

ATUT=1时,启动硬件数据流控制,启动 RTS/CTS 流控制。

电话:028-86127089 邮件:<u>support@hschip.com</u> 网址:<u>http://www.hschip.com.cn</u>

©Copyright 2008. All rights reserved.

第 17 页

HS-ENG09xB 嵌入式微型网关服务器数据手册 V4.0

6. 以太网物理连接控制 (ATET)

HS-ENG09xB 可通过 ATET 指令设置以太网的连接。设置值如下:

ATET 值	说明				
0	10M/100M 自动握手连接				
1	100M 全双工自动握手连接				
2	固定为 100M 全双工,禁止自动握手				
3	固定为 100M 半双工,禁止自动握手				
4	固定为 10M 全双工,禁止自动握手				
5	固定为 10M 半双工,禁止自动握手				

7. 端口工作模式 (ATSR)

HS-ENG09xB 提供 1 个端口连接,可以设置为 5 种工作模式:

ATSR 值	工作模式
0	端口工作在TCP服务器模式(默认设置)。远程主机(TCP客户端)与HS-ENG09xB
	通信之前,必须先以客户端的方式与 HS-ENG09xB 建立连接
1	端口工作在 TCP 客户端模式。HS-ENG09xB 与远程主机(TCP 服务器模式)通
	信之前,必须先与远程主机建立连接
2	端口工作在 UDP 模式 0,它与远程主机通信之前不需要建立连接。在这种模式下
	HS-ENG09xB与远程主机通信的目的 IP 地址和目的端口号可以由 ATDA 和 ATDP
	设置,但 HS-ENG09xB 在通信过程中会自动刷新目的 IP 地址和目的端口号
3	端口工作在 UDP 模式 1,它与远程主机通信之前不需要建立连接。在这种模式下
	HS-ENG09xB与远程主机通信的目的 IP 地址和目的端口号完全由 ATDA 和 ATDP
	设置。并且与 ATSR=2 不同,HS-ENG09xB 在通信过程中不刷新,而是固定使用
	设置的目的 IP 地址和目的端口号
5	端口工作在 UDP 的组播状态。

例,设置端口连接为 TCP 客户端模式,则: ATSR=1<回车>

组播:

组播是将数据包以 UDP 方式发向同一个分组的设备。组播 IP 地址为一个 D 类地址,地址范围在 224.0.0.0 到 239.255.255.255。通过修改目的 IP 地址来设置组播地址,通过修改目的端口号来设置组播端口号。

如果 ATSR=5,而设置的目的 IP 地址不是一个组播的 D 类地址,那么将使用 HS-ENG09xB 默认的组播地址: **224.1.1.10**。

电话:028-86127089 邮件:<u>support@hschip.com</u> 网址:<u>http://www.hschip.com.cn</u>

©Copyright 2008. All rights reserved.

第 18 页

HS-ENG09xB 嵌入式微型网关服务器数据手册 V4.0

8. 网关 IP (ATGA)

4 个部分,中间以','隔开,每个部分的数字不大于 255。例,设置网关 IP 地址为 192.168.0.1, 则: ATGA=192.168.0.1<回车>

9. 子网掩码 (ATSM)

4 个部分,中间以'.'隔开,每个部分的数字不大于 255。例,设置子网掩码为 255.255.255.0, 则: ATSM=255.255.255.0<回车>

10. 本机物理地址 (ATPH)

该指令是一个只读指令,HS-ENG09xB 的物理地址不能修改。读取的物理地址是 6 个字节的 16 进制数。

例如,输入: ATPH<回车>, HS-ENG09xB 则返回 HS-ENG09xB 的 6 个字节的物理地址。

11. 本机 IP 地址 (ATIP)

4 个部分,中间以'.'隔开,每个部分的数字不大于 255。例,设置本机 IP 地址为 192.168.0.30, 则: ATIP=192.168.0.30<回车>

12. 本机端口地址 (ATPT)

取值范围 0~65535。字符连续输入,中间没有任何隔离(包括空格)。例,设置本机端口号为 5000,则:ATPT=5000<回车>

13. 目的 IP 地址 (ATDA)

4 个部分,中间以'.'隔开,每个部分的数字不大于 255。例,设置目的 IP 地址为 192.168.0.2 则: ATDA=192.168.0.20<回车>

网络端口工作在 TCP 客户端和 UDP 模式 1 时,此目的 IP 地址对于正确地通信建立非常重要, 必须正确设置。

网络端口工作在 UDP 组播状态时,目的 IP 地址必须设置为 D 类 IP 地址,D 类 IP 地址的范围

电话:028-86127089 邮件: support@hschip.com 网址:http://www.hschip.com.cn 第19页

HS-ENG09xB 嵌入式微型网关服务器数据手册 V4.0

在 224.0.0.0~239.255.255.255 之间。

网络端口工作在 UDP 模式 0 时,由于目的 IP 和目的端口号在通信过程中不断刷新,因此该参数只是在初始过程中有效。

端口工作在 TCP 服务器模式时,该参数无效。

14. 目的端口号 (ATDP)

取值范围 0~65535。字符连续输入,中间没有任何隔离(包括空格)。例,设置目的端口号为6000,则: ATDP=6000<回车>

网络端口工作在 TCP 客户端和 UDP 模式 1 时,此目的端口号对于正确地通信建立非常重要,必须正确设置。

网络端口工作在 UDP 模式 0 时,由于目的 IP 和目的端口号在通信过程中不断刷新,因此该参数只是在初始过程中有效。

网络端口工作在 TCP 服务器和 UDP 模式 3 时,该参数无效。

15. 时间分割 (ATTM)

HS-ENG09xB 通过串口接收数据,如果数据的两个字节之间的停顿时间超过时间分割值, HS-ENG09xB 则把前面接收到的数据打包,并启动端口数据传输。

时间参数的取值范围在 0~5000 之间,单位为 0.001 秒。最短时间 0.001 秒,最长时间 2.048 秒。当时间分割设置为 0 时,则取消时间分割。默认设置为 5。

例:设置时间分割值为300毫秒,则:ATTM=300<回车>

时间分割适用于间断、不连续的数据流传输。

如果取消时间分割,则必须正确设置字节分割,否则 HS-ENG09xB 将无法正常传输数据。可以把两种分割方式都设置有效。如果两种分割方式都设置有效,那么任何一种分割条件满足时,都立即启动数据组包发送。

如果将时间分割参数设置太大,将引起通信时间的延迟。因此,当出现明显的通信延迟时,应该检查时间分割参数值是否正确设置。

电话:028-86127089 邮件:<u>support@hschip.com</u> 网址:<u>http://www.hschip.com.cn</u>

第20页

HS-ENG09xB 嵌入式微型网关服务器数据手册 V4.0

16. 字节分割(ATBT)

HS-ENG09xB 从串口接收的数据字节数超过字节分割值, HS-ENG09xB 则将前面接收的数据 打包,并启动端口数据传输。

字节参数为两个字节,取值范围在1~1460之间,当字节分割设置为0时,取消字结分割。默 认设置为0,即取消字节分割。

例:设置字节分割值为 200 个字节,则:ATBT=200<回车>

字节分割方式适用于连续、无间断数据流的数据传输。

如果取消字节分割,则必须正确设置时间分割,否则 HS-ENG09xB 无法正常传输数据。可以 把两种分割方式都设置有效。

在通信过程中, 当串行端口接收到 1460 个字节还仍然没有满足的分割条件时, HS-ENG09xB 将强制进行 1460 个字节的分割。

17. 启动 DHCP 功能控制(ATOP)

ATOP 控制 HS-ENG09xB 上电时后的工作状态。

ATOP 值	上电后运行模式			
0	一般运行			
1	启动 PPPoE 连接(不支持)			
2	启动 DHCP 获取网络参数			

例,上电后启动 DHCP 获取网络参数,则:ATOP=2<回车>

18. 端口号自动调整控制(ATCP)

该指令只在 TCP 客户端模式下有效,其它模式下都无效。当:

ATCP=0 时,本机端口号由 ATPT 设置,连接过程中不作自动调整。

ATCP=1 时,本机端口号由 ATPT 初始设置,但在下列两种情况下会自动进行加 1 的改变:

- 1. 当发起一次 TCP 连接, 但连接失败;
- 2. 断开了 TCP 连接, 再重新发起 TCP 连接时,

为了改善 TCP 客户端连接,建议在 TCP 客户端模式下,将 ATCP 设置为 1。

电话:028-86127089 邮件: support@hschip.com 网址:http://www.hschip.com.cn 第 21 页

HS-ENG09xB 嵌入式微型网关服务器数据手册 V4.0

19. 串口设置时回显控制(ATEC)

ATEC 只是在使用串口设置参数时有效。控制串口设置时的字符回显。即输入的字符会及时反馈回设备。

ATEC=0, 串口字符不回显(默认)。

ATEC=1,串口字符回显。

20. 运行状态信息显示控制 (ATCM)

ATCM=1,通过串口显示模块的运行状态(默认)。

ATCM=0,不显示运行状态的任何信息。

当 ATCM=0 时,用户系统由于无法直接通过串口获得模块的运行状态信息,因此可以通过运行状态输出信号(RUN ST)来获得模块是否进入数据通信状态。

如果 RUN_ST 输出低电平,表示模块可以进行数据通信。在 TCP 模式,端口已经建立了 TCP 连接:在 UDP 模式,端口已经准备就绪。

如果 RUN_ST 输出高电平,表示模块还不能进行数据通信。在 TCP 模式,端口还没有建立 TCP 连接;在 UDP 模式,端口还没有准备就绪。

21. 读取模块版本信息(ATIF)(只读)

22. 对模块复位(ATRT)

该指令使模块重新启动,相当于上电复位。

模块工作在配置状态,当模块的参数配置完成以后,键入 <u>ATRT<CR></u>指令可以使模块复位,新设置的参数将在重新启动后生效。

23. 装载默认参数 (ATDF)

串口默认设置:波特率为9600bps,8位数据位,1位起始位,1位停止位,无奇偶校验位,无数据流控制。

电话:028-86127089 邮件:<u>support@hschip.com</u> 网址:<u>http://www.hschip.com.cn</u>

©Copyright 2008. All rights reserved.

第 22 页

HS-ENG09xB 嵌入式微型网关服务器数据手册 V4.0

网络的默认设置:

网关IP地址: 192.168.0.1 子网掩码: 255.255.255.0

● IP地址: 192.168.0.20

● 端口号: 5000

● 工作模式: TCP服务器

时间分割: 5ms字节分割: 0

● 以太网连接:自动握手

● 启动模式:直接运行

24. 设置/读取客户备注信息(ATRK)

HS-ENG09xB允许客户设置63个字节的备注信息。63个字节包括空格符和标点符号。一个汉字字符占用两个字节。

备注信息用于标识模块的安装位置、使用和维护等信息。当一个网络中有多个模块运行时,备注信息非常重要,给使用和维护带来很大的方便。

3.4 通过串行端口设置参数

通过 PC 机的串口调试工具设置和检查 HS-ENG09xB 的参数是非常方便的。设置串口通信参数:波特率为9600bps,8位数据位,1位起始位,1位停止位,无奇偶校验位,无数据流控制。

通过串口连接 PC 机与 HS-ENG09xB。将 HS-ENG09xB 的 CONFIG 接地,然后上电。如果 PC 串口终端上出现"SETUP MODE"信息,则表示它们之间通信正常,如图 3.1 所示。

SETUP MODE ATIP 192.168.000.020

图 3.1 PC 串口终端与 HS-ENG09xB 正常通信

在图 3.1 中,使用串口工具读取 HS-ENG09xB 的 IP 地址为 192.168.0.20。

电话:028-86127089 邮件:<u>support@hschip.com</u> 网址:<u>http://www.hschip.com.cn</u>

©Copyright 2008. All rights reserved.

第 23 页

4. 运行

4.1 进入工作状态

将HS-ENG09xB模块的CONFIG引脚悬空或接高电平,上电后HS-ENG09xB将进入工作状态。模块进入工作状态后,CONFIG引脚电平的变化不会改变模块的工作状态。

4.2 检查参数设置和硬件连接

初始化设置完成以后,在相同的子网内(如果不在相同的子网内,必须通过网关),可以按照下面的步骤,使用一台主机来检查 HS-ENG09xB 参数是否设置成功、网络连接是否完好。

对 HS-ENG09xB 通电,插上网线,如果 LINK 指示灯(绿色 LED 灯)亮,且 ACT 指示灯(黄色 LED 灯)闪烁,表示模块硬件工作正常。

可以通过 ping 命令检查网络连接和参数设置状态。

4.3 端口的三种工作模式

HS-ENG09xB 在上电以后,它首先检查网络连接、配置网络参数、检查网关等等一系列动作, 并回传显示相关的信息,如图 4.1 所示。

> CHECK ETHERNET LINK...100Mbps Based, Full Duple START NETWORK CONFIGURATION...

GATEWAY IP: 192.168.002.001 SUBNET MASK: 255.255.255.000

IP: 192.168.002.020

FIND GATEWAY

PORT NUMBER: OFOOO

图 4.1 HS-ENG09xB 启动工作时显示的信息

如果网络连接不好,HS-ENG09xB 将停止工作,不接收串口过来的数据,也不启动端口工作,直到网络连接成功。

如果没有找到网关,HS-ENG09xB 只能在同一个网段内(局域网)与其它设备通信,无法访问其它网段或进入 Internet。

TCP 通信是一种有连接的、可靠的通信,因此网络上的主机与 HS-ENG09xB 以 TCP 方式通信时,必须先建立 TCP 连接。在 TCP 模式下,如果还没有建立 TCP 连接,HS-ENG09xB 不接收来自串口的数据,即使串口发送数据到 HS-ENG09xB,这些数据都会被丢弃。

电话:028-86127089 邮件:<u>support@hschip.com</u> 网址:<u>http://www.hschip.com.cn</u>

©Copyright 2008. All rights reserved.

第 24 页

4.3.1 TCP 服务器模式

设置: ATSR=0

当 HS-ENG09xB 设置为 TCP 服务器模式时, HS-ENG09xB 复位以后处于侦听状态, 等待网 络上的客户端发起连接,如图 4.2 所示。

图 4.2 HS-ENG09xB 工作在 TCP 服务器模式的逻辑图

连接过程必须由远程主机主动发起,而 HS-ENG09xB 是处于被动等待连接的状态。连接成功 以后,数据通信则没有主动和被动的区分。

通过计算机的串口终端可以显示出 HS-ENG09xB 在 TCP 服务器模式时的状态及连接过程的信 息。如图 4.3 所示。

> CHECK ETHERNET LINK. . . 100Mbps Based, Full Dupl START NETWORK CONFIGURATION...

GATEWAY IP: 192.168.002.001 SUBNET MASK: 255.255.255.000

IP: 192.168.002.020

FIND GATEWAY

PORT NUMBER: 05000

图 4.3 HS-ENG09xB 在 TCP 服务器模式的信息

4.3.2 TCP 客户端模式

设置: ATSR=1

当 HS-ENG09xB 设置为 TCP 客户端模式时,HS-ENG09xB 将主动与网络上指定的服务器发 出连接请求。如图 4.4 所示。

图 4.4 HS-ENG09xB 工作在 TCP 客户端模式的逻辑图

连接过程是由 HS-ENG09xB 主动发起,而远程主机服务器处于被动等待连接的状态。连接成 功以后,数据通信则没有主动和被动的区分。

通过计算机的串口终端可以显示出 HS-ENG09xB 在 TCP 客户端模式回传的状态及连接过程信

电话:028-86127089 邮件: support@hschip.com 网址:http://www.hschip.com.cn 第 25 页

HS-ENG09xB 嵌入式微型网关服务器数据手册 V4.0

息。如图 4.5 所示。

CHECK ETHERNET LINK... 100Mbps Based, Full Dupl

START NETWORK CONFIGURATION...
GATEWAY IP: 192.168.002.001
SUBNET MASK: 255.255.255.000

IP: 192.168.002.020

FIND GATEWAY

PORT NUMBER: 05000

DESTINATION IP: 192.168.002.101

图 4.5 HS-ENG09xB 在 TCP 客户端模式的信息

当 HS-ENG09xB 向远程服务器发起 TCP 连接时,如果远程服务器没有响应,则会产生超时,然后再重新启动连接,直到建立连接为止。如图 4.6 所示。

CHECK ETHERNET LINK... 100Mbps Based, Full Duplex

START NETWORK CONFIGURATION... GATEWAY IP: 192.168.002.001 SUBNET MASK: 255.255.255.000

IP: 192.168.002.020

FIND GATEWAY

PORT NUMBER: 05000

DESTINATION IP: 192.168.002.101 DESTINATION PORT NUMBER: 05000

TCP CONNECT...

图 4.6 建立起 TCP 连接的过程

当 ATCP=1 时,HS-ENG09xB 无论什么时候发起一次新的 TCP 连接,本机的端口号都要做改变。比如,前一次发起 TCP 连接的端口号为 5000,但连接失败了,延迟 2 秒钟后,再次发起连接的端口号将改变为 5001。而当 ATCP=0 时,客户端的端口号是不改变的。连接过程的目的 IP 和目的端口号是不会改变的,除非重新设置了参数。

4.3.3 UDP 模式

UDP 是一种无连接的、不可靠的通信方式,因此当 HS-ENG09xB 设置为 UDP 模式时,HS-ENG09xB 与网络上的主机通信时不需要事先建立连接。如图 4.7 所示。

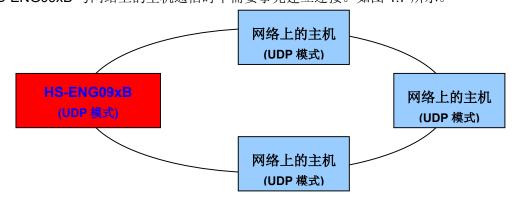


图 4.7 HS-ENG09xB 工作在 UDP 模式的逻辑图

电话:028-86127089 邮件:<u>support@hschip.com</u> 网址:<u>http://www.hschip.com.cn</u>

©Copyright 2008. All rights reserved.

第 26 页

HS-ENG09xB 嵌入式微型网关服务器数据手册 V4.0

设置: ATSR=2

当设置 ATSR=2 时,HS-ENG09xB 使用存储的通信参数,并且自动刷新目的 IP 和目的端口号 参数。地址刷新的过程如图 4.8 所示。

HS-ENG09xB 启动时,使用存储的目的 IP 和目的端口号

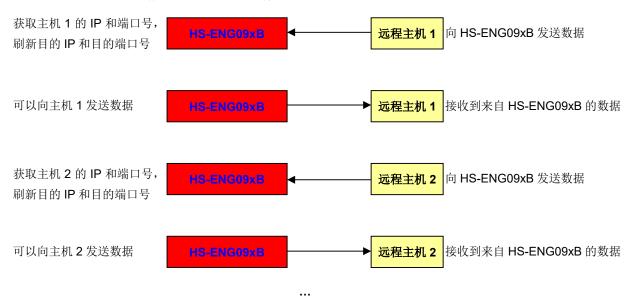


图 4.8 ATSR=2 时 HS-ENG09xB 自动刷新目的 IP 和目的端口号

设置 ATSR=2,端口工作在 UDP 模式 0,HS-ENG09xB 显示的信息如图 4.9 所示。

CHECK ETHERNET LINK...100Mbps Based, Full Duplex

START NETWORK CONFIGURATION... GATEWAY IP: 192.168.002.001 SUBNET MASK: 255.255.255.000

IP: 192.168.002.020

FIND GATEWAY

PORT NUMBER: 05000

DESTINATION IP: 192.168.002.101 图 4.9 端口工作在 UDP 模式 0

当 HS-ENG09xB 没有收到网络数据时,它会暂时使用在此处显示的目的 IP 地址和目的端口号,一旦收到对端的网络数据,此参数在通信过程中会被刷新。

当 HS-ENG09xB 接收到来自对端的网络数据时,它会捕获到对端的网络地址,该网络地址将作为新的目的地址使用。

设置: ATSR=3

当 ATSR=3 时,HS-ENG09xB 固定使用内部存储的通信参数。与 ATSR=2 不同,通信过程中目的 IP 地址和目的端口号不刷新。因此如果 HS-ENG09xB 只是固定地与网络上的一台主机以 UDP方式通信,设置 ATSR=3 是非常简单和可靠的。

电话:028-86127089 邮件:<u>support@hschip.com</u> 网址:<u>http://www.hschip.com.cn</u>

第27页

HS-ENG09xB 嵌入式微型网关服务器数据手册 V4.0

设置 ATSR=3,端口工作在 UDP 模式 1, HS-ENG09xB 显示的信息如图 4.10 所示。在此处显示的目的 IP 地址和目的端口号是最终通信使用的参数,在通信过程中者两个参数是不改变的。

CHECK ETHERNET LINK...100Mbps Based, Full Duple: START NETWORK CONFIGURATION... GATEWAY IP: 192.168.002.001

SUBNET MASK: 255.255.255.000

IP: 192.168.002.020

FIND GATEWAY

PORT NUMBER: 05000

DESTINATION IP: 192 168 002 101

图 4.10 端口工作在 UDP 模式 1

设置组播(多播)模式: ATSR=5

在这种模式下,端口工作在 UDP 组播模式。在这种模式下,用户需要设置目的 IP 地址为 D 类(组播或多播)地址,目的端口号为组播端口号。HS-ENG09xB 启动后显示信息如图 4.11 所示。

CHECK ETHERNET LINK...100Mbps Based, Full Duple:

START NETWORK CONFIGURATION... GATEWAY IP: 192.168.002.001 SUBNET MASK: 255.255.255.000

IP: 192.168.002.020

FIND GATEWAY

PORT NUMBER: 05000

图 4.11 HS-ENG09xB 工作在组播模式

从 HS-ENG09xB 串口接收到来自组内其它设备的数据则附加有网络信息。通过附加的网络信息,可以识别当前的数据来自组内的哪一个设备,数据格式如下:

必须正确设置模块的组播地址,组播地址是一个 D 类地址。如图 4-12 所示。

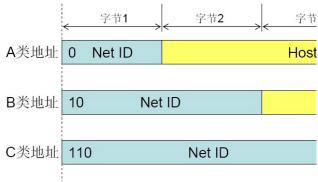


图-12 组播(多播)D类地址

如果用户不设置组播地址,那么模块将使用默认的组播地址,默认的组播地址为224.1.1.10。

组播端口号为设定的设备端口号,在同一个分组内的端口号必须相同。

电话:028-86127089 邮件:<u>support@hschip.com</u> 网址:<u>http://www.hschip.com.cn</u>

第28页

5. 动态获取 IP 地址 (DHCP)

网络中的 DHCP 服务器通过动态主机配置协议(Dynamic Host Configuration Protocol, 即 DHCP) 完成对 HS-ENG09xB 的 IP 地址动态分配以及其它网络参数的配置。要使 HS-ENG09xB 能够动态获取 IP 地址, 必须具备以下条件:

- 1. 网络中必须有 DHCP 服务器。一般路由器都具有 DHCP 服务的功能;
- 2. 设置 HS-ENG09xB 的 ATOP=2。

在 DHCP 模式下, ATGA、ATSM 和 ATIP 都不需要设置, HS-ENG09xB 会通过 DHCP 服务器 获取。而其它参数都需要正常设置。

将 HS-ENG09xB 设置为 DHCP 模式,重新上电启动 HS-ENG09xB 模块。这时,模块会自动 寻找 DHCP 服务器,并从 DHCP 服务器那里申请以下参数:

- 1. 本机的 IP 地址:
- 2. 网关 IP 地址:
- 3. 子网掩码;

HS-ENG09xB 与 DHCP 连接的过程中将状态显示如图 5.1 所示。

发现 DHCP 服务器 CHECK ETHERNET LINK. ll Duple: START DHCP... 从 DHCP 服务器获取网关 IP 地址、 FIND DHCP SERVER 子网掩码和本机 IP 地址 GET ACK FROM DHCP SERVED

5.1 HS-ENG09xB 与 DHCP 服务器连接过程状态

HS-ENG09xB 从 DHCP 服务器那里获得动态 IP 地址以及其它网络参数以后, 它会自动更新自 己的配置参数,然后进入正常的工作状态。

如果 HS-ENG09xB 访问 DHCP 服务器失败,那么它延时 1 秒钟后再次访问。如果连续三次都 失败,那么 HS-ENG09xB 将结束对 DHCP 服务器的访问,进入"ATOP=0"的启动模式。

HS-ENG09xB 每次启动 DHCP 所获得的本机 IP 地址可能不完全相同。

电话: 028-86127089 邮件: support@hschip.com 网址:http://www.hschip.com.cn

©Copyright 2008. All rights reserved.

第29页

6. 通过网络设置参数

可通过网络查看和设置 HS-ENG09xB 的内部参数,效果与 UART 相同。

要实现局域网内的服务器能够访问到所有的 HS-ENG09xB,要求服务器和 HS-ENG09xB 必须在同一个由交换机或路由器组成的物理局域网内实现,不能被路由器隔离。HS-ENG09xB 和服务器的基本配置如下:

- 1. HS-ENG09xB(模块)提供一个专用端口用于局域网内的计算机查看和设置内部参数,该端口工作在 UDP 模式,端口号为 "65000";
 - 2. 计算机作为服务器,它必须使用的"65002"端口,工作在 UDP 模式

服务器通过网络访问 HS-ENG09xB 工作原理如下:

1. 首先服务器使用广播地址 "255.255.255.255" 向 "65000" 端口广播发出"SETUP"指令,所有在网的 HS-ENG09xB 模块收到该信息后,将本机的 MAC 地址(6 个字节)传给服务器,同时使 HS-ENG09xB 由通信模式进入网络配置模式。

HS-ENG09xB 进入网络配置模式之前,将通过串行端口输出"REMOTE SET"信息,然后关闭串行端口,除了65000 的 UDP 端口以外,其它所有的通信端口都关闭。

2. 服务器采集所有的 HS-ENG09xB 的 MAC 地址,并由这些 MAC 地址建立一个设备列表。如果局域网内的 HS-ENG09xB 的模块数量很多,可多次发送"SETUP"指令,以完全查找到在网的 HS-ENG09xB。

服务器通过 MAC 可以识别到每一个 HS-ENG09xB 模块,并发出 AT 指令访问指定的模块。AT 指令访问 HS-ENG09xB 与通过串口访问基本相同,唯一的不同的地方在于,访问 HS-ENG09xB 的 AT 指令数据包中,在 AT 指令之前有 6 个字节的该 HS-ENG09xB 的 MAC 地址, MAC 地址与 AT 指令必须在同一个数据包中完整地发送出去,否则该数据包的 AT 指令无效;

指定 HS-ENG09xB 的 MAC 地址	AT 指令	回车 (0x0D)
------------------------	-------	-----------

比如服务器要读取 MAC 地址为 48-53-9B-00-00-5E 的 HS-ENG09xB 模块的 IP 地址,服务器 发出的数据包为:

0x48, 0x53, 0x9B, 0x00, 0x00, 0x5E, "ATIP", 0x0D

指令字符"ATIP"以ASCII码表达。

服务器可以使用广播 MAC 地址(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF) 对在网的所有模块进行设置,不论服务器对模块的设置是否成功,模块都不返回参数。

3. 因为服务器采用的是全域广播的方式发送数据,所以 HS-ENG09xB 收到服务器的 AT 指令数据包后,首先通过 MAC 地址判断该指令的归属,是否属于自己的。

电话: 028-86127089 邮件: support@hschip.com 网址: http://www.hschip.com.cn

©Copyright 2008. All rights reserved.

第 30 页

HS-ENG09xB 嵌入式微型网关服务器数据手册 V4.0

如果是属于自己的 AT 指令,则处理该指令,并返回 AT 指令处理结果信息。AT 指令的处理与串行口的完全相同。HS-ENG09xB 返回的数据包中也带 MAC 地址,与下发的数据包格式相同。

HS-ENG09xB 的 MAC 地址 AT 指令处理结果 回车 (0x0D),换行(0x0A)

如前面所述, 假如 MAC 地址为 48-53-9B-00-00-5E 的 HS-ENG09xB 的 IP 地址为: 192.168.0.10, 服务器读取 MAC 地址为 48-53-9B-00-00-5E 的 HS-ENG09xB 发出 ATIP 指令后, HS-ENG09xB 返回的数据包数据如下:

0x48, 0x53, 0x9B, 0x00, 0x00, 0x5E, "192.168.000.010", 0x0D, 0x0A

其中字符"192.168.000.010"以 ASCII 表达。

4. 服务器完成指定的 HS-ENG09xB 的参数设置后,向它输入"END"指令,或输入 "ATRT" 指令,即中止与指定的 HS-ENG09xB 的通信,同时指定的 HS-ENG09xB 将重新启动,新设置的参数即可有效。

"END"指令后面没有回车(0x0D)符,但 "ATRT"指令后面必须有回车(0x0D)符。

服务器还可以使用广域 MAC 地址 "255.255.255.255.255", 对在网的所有 HS-ENG09xB 模块复位。

5. 服务器与 HS-ENG09xB 模块必须是在同一个交换机或路由器组成的物理局域网内,不能通过路由器跨网段运行。在同一个物理局域网内,服务器和 HS-ENG09xB 的 IP 地址可以不是在同一个网段。

如果服务器和 HS-ENG09xB 的 IP 地址不是在同一个网段,可能会影响访问的速度。

6. 如果在 3 分钟之内模块没有收到服务器的访问信息,模块将自动复位,进入正常的运行状态。运行参数以最近设置的参数。

电话:028-86127089 邮件:<u>support@hschip.com</u> 网址:<u>http://www.hschip.com.cn</u>

第 31 页

HS-ENG09xB 嵌入式微型网关服务器数据手册 V4.0

7. 电参数

3.3V 工作电压时参数:

参数类型	最小值	典型值	最大值	单位	备注
输入直流电压	3.0	3.3	3.6	V	
工作电流			150	mA	典型供电时测得的值

5V 工作电压时参数:

参数类型	最小值	典型值	最大值	单位	备注
输入直流电压	4.5	5.0	5.5	V	
工作电流			155	mA	典型供电时测得的值

其它参数:

参数类型	最小值	典型值	最大值	单位	备注
工作环境温度	-10		55	$^{\circ}$	
工作环境湿度		90		%	空气中没有结露

电话:028-86127089 邮件:<u>support@hschip.com</u> 网址:<u>http://www.hschip.com.cn</u>

第 32 页