

SHENZHEN HUAYUAN MICRO ELECTRONIC TECHNOLOGY CO., LTD.

Shenzhen Office:

TEL: 0755-29881155 FAX:0755-29881157 EMAIL:zxsf_sales@163.com QQ:2109300457 www.szhywd.com

Approval Specification	Customer's Approval Certificate
то:	Please return this copy as a certification of your approval
Part No.:	Checked & Approved by:
Customer's Part No.:	Date:

BEIJING ZHONGXUN SIFANG SCIENCE & TECHNOLOGY CO.,LTD.

Fax: +86-010-58937263

E-mail: zxsf_sales@163.com

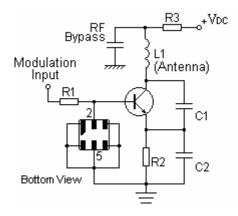
QQ: 2109300457

Website: <u>http://www.bjzxsf.net</u>

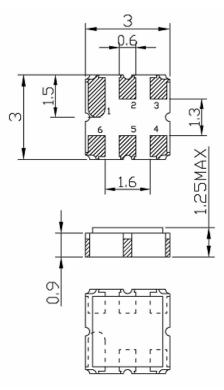
Add: No 201, Block A. Building 3. Yongjie Beilu Yongfeng high-tech industrial base Haidian District Beijing city

Part No.	:	R868
Pages	:	6
Date	:	2013/6/19
Revision	:	1.0

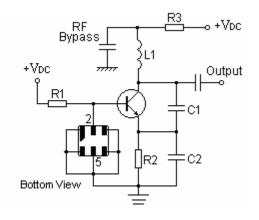
Prepared by:	
Checked by:	
Approved by:	


SAW Resonator

Features


- 1-port Resonator
- Ceramic Package for Surface Mounted Technology (SMT)
- RoHS compatible
- Package size 3.00x3.00x1.25mm³
- Package Code DCC6C
- Electrostatic Sensitive Device(ESD)

Application


Typical Low-Power Transmitter Application

Package Dimensions (DCC6C)

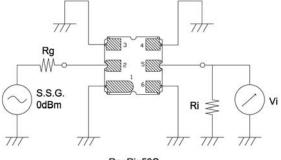
Typical Local Oscillator Application

Pin Configuration

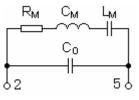
2	Input	
5	Output	
1,3,4,6	Ground	

www.bjzxsf.net

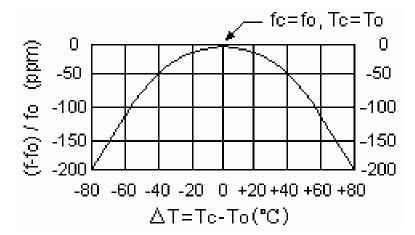
SAW Resonator


R868

Marking


R	SAW Resonator	
868	Part number	

Test Circuit



Equivalent LC Model

Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include LC component temperature contributions.

- 3 -

SAW Resonator

Performance

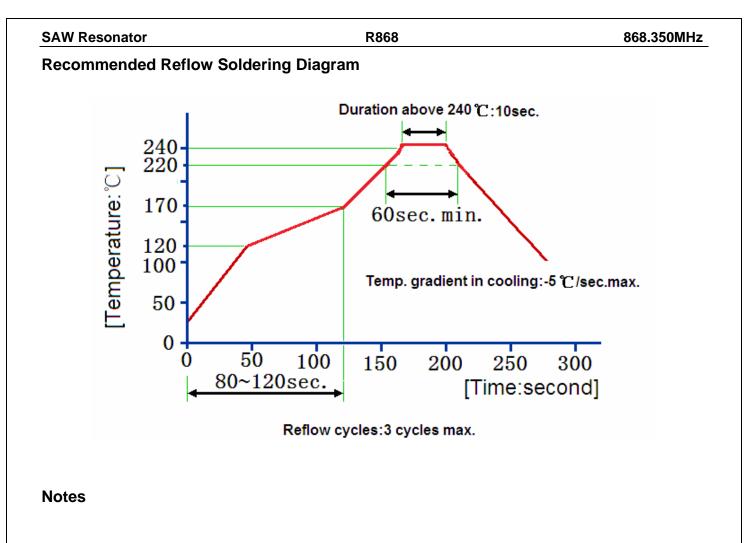
Maximum Rating

Item		Value	Unit
DC Voltage	V _{DC}	10	V
Operation Temperature	т	-40 ~ +85	°C
Storage Temperature	T _{stg}	-55 ~ +125	°C
RF Power Dissipation	Р	10	dBm

Electronic Characteristics

Test Temperature: $25^{\circ}C \pm 2^{\circ}C$

Terminating source impedance: 50Ω


Terminating load impedance: 50Ω

	Item			Typical	Maximum	Unit
Center	Absolute Frequency	f _c		868.350		MHz
Frequency	Tolerance from 868.350MHz	∆fc		±150		KHz
Insertion Loss(r	nin)	IL		1.0	2.0	dB
Quality Factor	Unloaded Q	QU		9400		
Quality Factor	50Ω Loaded Q	QL		1500		
	Turnover Temperature	T ₀	25	40	55	°C
Temperature Stability	Turnover Frequency	f ₀		f _c		
	Frequency Temperature Coefficient	FTC		0.032		ppm/℃
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resistance between Any Two Pins			1.0			MΩ
	Motional Resistance	R _M		12.0	22.0	Ω
RF Equivalent	Motional Inductance	L _M		32.6		μH
RLC Model	Motional Capacitance	См		1.05		fF
	Static Capacitance	C ₀	2.1	2.4	2.7	pF

SAW Resonator R868 **Frequency Response** 19 Jun 2013 14:02:40 CH1 S21 REF - 8 dB LOG 2 dB/ ·. 92330 dB 868 . 350 000 MHz ħρ PRm Max đ CΔ HId 868 . 350 000 MHz CENTER SPAN 1.000 000 MHz Reliability (The SAW components shall remain electrical performance after tests)

No.	Test item	Test condition		
1	Temperature Storage	 (1) Temperature: 85℃±2℃, Duration: 250h, Recovery time: 2h±0.5h (2) Temperature: -55℃±3℃, Duration: 250h, Recovery time: 2h±0.5h 		
2	Humidity Test	Conditions: 60°C±2°C , 90~95% RH Duration: 250h		
3	Thermal Shock	Heat cycle conditions: TA=-40℃±3℃, TB=85℃±2℃, t1=t2=30min, Switch time: ≤3min , Cycle time: 100 times , Recovery time : 2h±0.5h.		
4	Vibration Fatigue	Frequency of vibration: 10~55HzAmplitude:1.5mmDirections: X,Y and ZDuration: 2h		
5	Drop Test	Cycle time: 10 times Height: 1.0m		
6	Solder Ability Test	Temperature: 245°C±5°C Duration: 3.0s5.0s Depth: DIP2/3 , SMD1/5 Duration: 3.0s5.0s		
7	Resistance to Soldering Heat	 (1)Thickness of PCB:1mm , Solder condition: 260℃±5℃ , Duration: 10±1s (2)Temperature of Soldering Iron: 350℃±10℃ , Duration: 3~4s , Recovery time : 2 ± 0.5h 		

www.bjzxsf.net

- 1. As a result of the particularity of inner structure of SAW products, it easy to be breakdown by electrostatic, so we should pay attention to **ESD protect** in the test.
- 2. **Static voltage** between signal load and ground may cause deterioration and destruction of the component. Please avoid static voltage.
- 3. **Ultrasonic cleaning** may cause deterioration and destruction of the component. Please avoid ultrasonic cleaning.
- 4. Only leads of component may **be soldered**. Please avoid soldering another part of component.
- 5. There is a close relationship between the device's performance and **matching network**. The specifications of this device are based on the test circuit shown above. L and C values may change depending on board layout. Values shown are intended as a guide only.

- 6 -