RS-232 收发器 CX7232SNI 产品说明书

V1.00

1 产品概述

CX7232SNI 是一款双通道、低功耗、高 ESD 保护的 RS-232 收发器,内部集成了两个发送器和两个接收器,所有发送器输出引脚和接收器输入引脚的 ESD 均达到±15kV,逻辑 I/O 引脚也达到±2kV。

1.1 产品特性

- ◆ 可实现与 MAX 公司的 MAX3232EESE (SOP16) 脚对脚替换
- ◆ 电源电压: 3.0V~5.5V
- ◆ 传输速率: 120kbps
- lacktriangle ESD (HBM): $\pm 15 \text{kV}$
- ◆ 质量等级:工业级

1.2 管脚排列

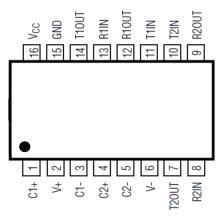


图1 管脚排列图(顶视图)

引出端管脚说明:

序号	符号	功能	序号	符号	功能
1	C1+	电荷泵电容正端 1	9	R2OUT	接收器输出端 2
2	V+	电荷泵产生的正电压端	10	T2IN	发送器输入端 2
3	C1-	电荷泵电容负端 1	11	T1IN	发送器输入端 1
4	C2+	电荷泵电容正端 2	12	R1OUT	接收器输出端1
5	C2-	电荷泵电容负端 2	13	R1IN	接收器输入端 1
6	V-	电荷泵产生的负电压端	14	T1OUT	发送器输出端1
7	T2OUT	发送器输出端 2	15	GND	地端
8	R2IN	接收器输入端 2	16	VCC	电源端

注: CX7232SNI 的内部电源由两路稳压型电荷泵组成,在 $3V\sim5.5V$ V_{CC} 范围内,提供+5.5V 和-5.5V 输出电压。电荷泵工作在非连续模式,一旦输出电压低于 5.5V,将开启电荷泵;输出电压超过 5.5V 时,则关闭电荷泵。每个电荷泵需要一个飞电容(C1、

成都承芯科技有限公司

C2)和一个储能电容(C3、C4),产生V+、V-电压,如图2所示。

2 电特性

2.1 绝对最大额定值

参数	符号	最小值	最大值	单位
电源电压	V_{CC}	-0.3	-0.3 6.0	
正电压	V_{+}	V _{CC} -0.3	7.5	V
负电压	V-	-7.5	+0.3	V
TIN 上的电压	-	-0.3	V _{CC} +0.3	V
RIN 上的电压	-	±30		V
TOUT 上的电压	-	V0.3	V-+0.3	V
ROUT 上的电压	-	-0.3	V _{CC} +0.3	V
功耗	P_D	696		mW
贮存温度	T _{STG}	-65 +150		°C
引线耐焊接温度(10s)	Th	300		°C
静电放电	ESD (HBM)	±	15	kV

2.2 推荐工作条件

参数	符号	最小值	最大值	单位
电源电压	V_{CC}	-0.3	6.0	V
工作温度	TA	-55	+105	°C

2.3 电特性

若无特殊说明,测试条件为 T_A =-55℃ ~+105℃, V_{CC} =3.0V~5.5V,C1-C4 = 0.1 μ F 。

17571117	不见为1,初此无	11/3 1A-33 C 1103 C; VCC-3.0 V .).5 v, C1	C T = 0.1	μIο	
符号	参数	测试条件	最小值	最大值	单位	
直流电物	导性					
I_{CC}	电源电流	无负载	-	1.5	mA	
逻辑输入						
-	输入漏电流	-	-	±1.0	μА	
$ m V_{IL}$	输入低电平电	$V_{CC} = 3.3V$	-	0.8	V	
VIL	压	$V_{\rm CC} = 5.0 V$	-	0.8	·	
17	输入高电平电	$V_{CC} = 3.3V$	1.6	-	V	
V_{IH}	压	$V_{CC} = 5.0V$	1.2	-	V	
	发送器输入迟	$V_{CC} = 3.3V$	0.2	2	V	
滞电压		$V_{CC} = 5.0V$	0.15		·	
发送器轴	俞出					
-	输出电压摆幅	T 输出端 R _L = 3k Ω 到 GND	±5.0	-	V	
-	输出短路电流	$V_{CC} = 3.3V$	-	±60	mA	

CXYTW

成都承芯科技有限公司

符号	参数	测试条件		最小值	最大值	单位		
		$V_{CC} = 5.0V$						
接收器轴	接收器输出							
3.7	输出低电平电	$V_{CC} = 3.3V,$	I _{OUT} = 10mA	-	0.8			
Vol	压	$V_{CC} = 5.0V$,	I _{OUT} = 10mA	-	0.8	V		
3.7	输出高电平电	$V_{CC} = 3.3V$,	$I_{OUT} = -3mA$	2.8	-	3.7		
Voh	压	$V_{\rm CC} = 5.0 V$,	$I_{OUT} = -3mA$	4.4	-	V		
接收器轴	接收器输入							
-	输入电压范围	_		-30	30	V		
	输入低电平阈	T. 050G	$V_{CC} = 3.3V$	0.8		**		
-	值电压	$T_A = 25$ °C	$V_{CC} = 5.0V$	0.8		V		
	输入高电平阈	T. 050G	$V_{CC} = 3.3V$		2.0	**		
-	值电压	$T_A = 25$ °C	$V_{CC} = 5.0V$		2.0	V		
-	输入迟滞电压	-		0.3	2	V		
-	输入电阻	$T_A = 25^{\circ}C$		3	7	kΩ		
时间电特性								
-	最大数据速率	$R_L = 3 \sim 7 k \Omega$, $C_L = 50 pF \sim 1000 pF$		250		kbps		
t _{PLH} ,	接收器传播延	Cr = 150mE		0.15		Ша		
t_{PHL}	迟时间	$C_L = 150 pF$		0.15		μs		
t _{PLH} ,	发送器传播延	$R_L = 3k \Omega$, $C_L = 2500pF$		0.9		μs		
t_{PHL}	迟时间	Tt_ JR 32 y	0.7		۵ ۳			

3 应用信息

3.1 典型应用

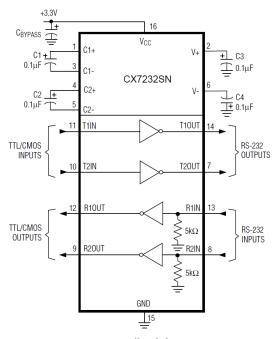


图2 典型应用

成都承芯科技有限公司

C1~C4 所使用的电容类型对器件的正常工作影响不大,可以使用有极性或无极性电容。3.3V 供电时,电荷泵需要 0.1μF 电容;其它供电电压下的电容选择请参考表 1,不要使用低于表 1 所列容值的电容。增大电容值(例如增大 2 倍)有助于降低发送器输出的纹波,并对降低功耗略有帮助。可以不改变 C1,只是增大 C2、C3 和 C4。但是,请勿在 C2、 C3、C4 和 C_{BYPASS} 没有增大的情况下增大 C1,需维持这些电容之间的适当比值(C1 相对于其它电容)。

大多数情况下,使用一个 0.1µF 的 VCC 旁路电容即可进行电源去耦,在对电源噪声敏感的应用中,采用与电荷泵电容 C1 相同的电容。

V _{CC} / (V)	C1 (µF)	C2, C3, C4 (µF)
3.0~3.6	0.1	0.1
4.5~5.5	0.047	0.33
3.0~5.5	0.1	0.47

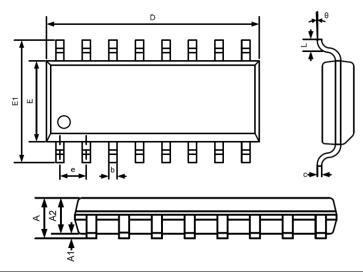
表1 最小电容推荐表

3.2 操作规程及注意事项

器件必须采取防静电措施进行操作。取用器件时应佩戴防静电手套,防止 ESD 对器件造成损伤。在进行器件焊接或安装时,应注意器件的方向;将器件从 电路板上取下时,应注意施力方向以确保器件管脚均匀受力。

推荐下列操作措施:

- a) 器件应在防静电的工作台上操作,或佩戴防静电手套:
- b) 试验设备和器具应做好接地处理:
- c) 不能随意触摸器件表面及引线;
- d) 器件应存放在导电材料制成的容器中(如:集成电路专用盒);
- e) 生产、测试、使用以及转运过程中应避免使用引起静电的塑料、橡胶或丝织物:
 - f) 相对湿度尽可能保持在 50%以上;
 - g) 使用时,正确区分器件的电源和地,防止发生短路。


3.3 运输和储存

器件贮存环境温度为-65℃~+150℃,使用指定的防静电包装盒进行产品的包装和运输。在运输过程中,确保器件不要与外物发生碰撞。

3.4 开箱和检查

开箱使用器件时,请注意观察器件管壳上的产品标识。确定产品标识清晰, 无污迹,无擦痕。同时,注意检查器件管壳及引脚。确定管壳无损坏,无伤痕, 管脚整齐, 无缺失, 无变形。

4 封装形式 (SOP16)

尺寸符号	单位: mm				
人才切名	最小	公 称	最大		
A	1.35	1.55	1.75		
A1	0.10	•	0.25		
A2	1.25	1.45	1.65		
b	0.33	0.42	0.51		
c	0.17	0.21	0.25		
D	9.80	10.00	10.20		
Е	3.70	3.90	4.10		
E1	5.80	6.10	6.40		
e	1.27BSC				
L	0.40	-	1.27		
θ	0°	-	8°		