超声波风速风向仪使用说明书 GXF402 系列

目录

<i>—</i> `,	产品概述1
<u> </u>	产品选型1
三、	产品说明2
1.	外观指示说明2
2.	产品尺寸说明3
3.	支架安装说明3
4.	风速测量安装说明4
5.	风向测量安装说明5
6.	信号连接说明6
四、	快速入手7
五、	快速集成9
1.	运行软件9
2.	获取测量结果10
3.	修改通讯地址10
4.	无风初始化11
5.	软件复位12
6.	刷新参数12
7.	写入校准表12
8.	删除校准表13
9.	设备序列号13
10.	查看命令与数据13
六、	MODBUS 寄存器说明14
1.	线圈说明14
2.	保持寄存器说明14

3.	输入寄存器说明	. 15
七、	风速仪的校准	. 17
1.	风速校零	. 17
2.	风速校准	. 18
八、	厂家信息	.21

一、产品概述

GXF-402 系列超声波风速风向仪为五合一数字式环境检测设备。可精确测量 环境风速、风向、温度、湿度和大气压。采用先进的超声波测量技术,支持 MODBUS 协议,数字化结果输出,支持 RS485, RS232 或 TTL/CMOS UART 接口。允许 6V 到 30V 宽电压供电输入。适用于气象观测,环境监控,工控环境监测等领域。是 全新一代物联网化的多功能环境传感器。

二、产品选型

GXF-402系列提供三款型号的产品,分别为GXF402-R,GXF402-T和GXF402-U. 此系列产品的区别在于接口类型不同,方便不同场合的应用。

产品型号	接口类型
GXF402-R	RS485 接口
GXF402-T	RS232 接口
GXF402-U	TTL/CMOS UART 接口

1. 外观指示说明

底面视图

2. 产品尺寸说明

3. 支架安装说明

本品底部预埋 4 颗 M2.5 螺母,可用于本产品与外部支架固定。外部 M2.5 螺丝旋转进预埋螺母的长度建议不短于 4mm,不大于 5mm。各预埋螺母与中心 距离为 40mm。

注意安装与拆卸支架时,不要与底盖固定螺丝(4颗内六角 M2.5 黑色螺丝)

混淆。

客户自行设计的风速仪支架,请注意支架不要遮挡温湿度测量口。

4. 风速测量安装说明

产品风速测量区域 (上图虚线指示的区域)是本产品测量环境风速风向区域。在产品安装时,要求此区域不能有遮挡物品。任何物品探入此空间都会造成风速风向测量的不准确。

在风速测量区域内有四个超声波换能器,在测量过程中,要求四个换能器表 面不能有水雾冰凝结。

通过产品风速测量区域的风应尽量保持层流(下图"层流示意图"),如果遇 到湍流(下图"湍流示意图"),测量数值将产生偏差。

5. 风向测量安装说明

产品顶面安装方向辅助指示代表风向为0度,即风从此方向来时,输出风速 角度数值为0度。风向测量如下图。

在产品的顶部,中部,底部,有三个安装方向辅助指示,建议在固定风速仪时,此方向指向北方。

6. 信号连接说明

产品信号连接采用 WEIPU 威浦航空插头插座防水连接器 SP13-4。接口定义如下:

风速仪底部视图

(1) GXF402-R 接口说明

连接接口	名称	说明		
		外部供电正极。DC12V(典型值)		
1	V+	可以接入 DC6V 到 DC30V 外部直流电源。		
		具备反接电源保护,最大工作电流为25mA。		
2	RS485-A (D+)	RS485 通讯接口 A。		
3	RS485-B (D-)	RS485 通讯接口 B。		
4	V-	外部供电负极。		

(2) GXF402-T 接口说明

连接接口	名称	说明		
		外部供电正极。DC12V(典型值)		
1	V+	可以接入 DC6V 到 DC30V 外部直流电源。		
		具备反接电源保护,最大工作电流为25mA。		
2	R232-TX	RS232 通讯,本机信号输出,连接用户输入。		
3	R232-RX	RS232 通讯,本机信号输入,连接用户输出。		
4	V-	外部供电负极。		

(3) GXF402-U 接口说明

连接接口	名称	说明			
		外部供电正极。DC12V(典型值)			
1	V+	可以接入 DC6V 到 DC30V 外部直流电源。			
		具备反接电源保护,最大工作电流为 25mA。			
2	UART-TX	3.3V UART 通讯,本机信号输出,连接用户输入。			
3	UART-RX	3.3V UART 通讯,本机信号输入,连接用户输出。			
4	V-	外部供电负极。			

四、快速入手

第一次拿到本设备时,如果需要快速获取本产品测量结果,可按以下操作步骤进行操作。

以 GXF402-R 为例,首先将 RS485 接口与上位机正确连接,并给设备供电。 串口通讯波特率为 9600bps,8 位数据,1 位停止,无奇偶校验,无流控制器。

通过串口以十六进制发送以下命令:

查询命令	01 04 00 00 00 06 70 08
返回数据	01 04 0C V1 V2 D1 D2 T1 T2 H1 H2 P1 P2 P3 P4 C1 C2
(举例说明)	(01 04 0C 00 52 08 8A 09 45 0E 88 8B EE 00 01 BE 0C)

查询命令说明:

查询命令	字节	命令说明		
01	1	MODBUS 设备地址,询问目标设备地址为0x01。(7 品出厂默认地址为0x01)		
04	1	MODBUS 功能码,读取输入寄存器。		
00 00	2	访问输入寄存器的起始地址是 0x00。		
00 06	2	从输入寄存器的起始地址开始,连续读取6个寄存器的内容。每个 MODBUS 输入寄存器为2字节,此处即要求读取12字节内容。		
70 08	2	MODBUS CRC 校验码,低字节在前,高字节在后。		

返回数据说明:

返回数据	说明	单位	举例说明		
01	设备地址	_	MODBUS 设备地址。		
04	功能码	_	MODBUS 功能码,读取输入寄存器。		
0C	返回数据字 节数	字节 Byte	后续12个字节为返回的数据。		

V1 V2	风速值	米/秒 m/s	两字节十六进制结果,包含两位小数。 V1 V2 = 00 52 风速值= 0.82 m/s		
D1 D2	风向值	度 。	两字节十六进制结果,包含一位小数。 D1 D2 = 08 8A 风向值= 218.6 °		
T1 T2	温度值	摄氏度 ℃	两字节十六进制结果,包含两位小数。 T1 T2 = 09 45 温度值= 23.73 ℃		
H1 H2	湿度值	百分比 %	两字节十六进制结果,包含两位小数。 H1 H2 = OE 88 湿度值= 37.20 %		
P1 P2 P3 P4	气压值	帕斯卡 Pa	 四字节十六进制结果。 P1 P2 = 8B EE 大气压低位 P3 P4 = 00 01 大气压高位 气压值= 101358 Pa 两字节 MODBUS CRC 数据校验 C1 = BE CRC 校验码低字节 C2 = 0C CRC 校验码高字节 		
C1 C2	CRC	_			

用此一条查询命令,即可快速获取环境5要素测量结果。

五、快速集成

为了方便系统集成的用户快速使用本产品,建议在系统集成初期使用本公司 提供的配置软件——"超声波风速仪配置工具"。通过友好的界面操作,直观感 知如何与设备交互。快速掌握访问内部寄存器的方法,清晰获取 MODBUS 发送命 令与接收数据格式。方便您快速将本产品集成到系统中。

1. 运行软件

- 运行软件 "GXFCfgTools.exe"。
- 在"端口"位置选择与本产品连接的串口,并"打开"串口。软件内部默认 波特率为 9600 bps。
- 在"系统设置"-"目的地址"右侧空白处输入 MODBUS 设备地址,地址范围 为1到240(0x01至0xF0)。设备出厂默认地址为1。
- 如果不清楚当前连接设备的地址,可以在"设备列表"下的空白处,单击鼠标右键,通过"搜索设备"查询目前连接设备的地址。

设备列表	系统设置 端口: COM5 V 关闭 目的地址: 1	
	测量数据 风速: 0.00 m/s 风向: 0° 刷新数据	₹
搜索设备 删除设备	温度: 0.00 ℃ 湿度: 0.00 % 自动翱荡	Б
清空列表	气压: 0 Pa	
	参数配置 通讯地址 修改校正表条目:	
	校正值 修改 •	
	刷新参数 夏位设备	
	设备SN:	
	读SN	

2. 获取测量结果

设备列表	系统设置 端口: COM5 🗸 关闭 目的地址: 1			
	·测量数据 风速: 0.39 m/s	风庐	ने: 208.7	◎ 刷新数据
	温度: 23.43 ℃	湿度	〕: 48.89	% 自动刷新
	气压: 100875 Pa	l		
	参数配置 通讯地址 1	修改	校正表条目: 0	
	原始值 0		原始值	校正值
	校正值 0	修改	*	
	刷新参数	无风初始化 复位设备		
	设备SN:			
	读SN			
Sand: 16:39:17-01.0	14 00 00 00 06 70 08			

Rec : 16:39:17-:01 04 0C 00 27 08 27 09 27 13 19 8A 0B 00 01 08 0B

- 刷新数据:查询一次当前设备的风速、风向、温度、湿度和大气压。
- 自动刷新:每秒自动查询一次当前设备的风速、风向、温度、湿度和大气压。
- 在测量数据区域会显示测量到的结果。
- 界面最下方空白处会显示数据发送与接收的时间,MODBUS 协议发送命令和 接收数据的内容。

3. 修改通讯地址

如果需要修改当前设备的通讯地址,在"参数配置"-"通讯地址"的右侧, 填写更改后的地址,选择修改。

例如当前设备通讯地址是 1, 需要改为 6。那么"系统设置"-"目的地址" 右侧填写"1",即按照 MODBUS 协议,即将访问的地址是 1。"参数配置"-"通 讯地址" 右侧填写"6",即把当前设备的地址更改为 6。

如下图所示:

- 设备列表	系统设置
	端口: COM5 🗸 关闭 目的地址: 1
	测量数据
6	风速: 0.03 m/s 风向: 0° 刷新数据
	温度: 23.45 ℃ 湿度: 48.89 % 自动刷新
	气压: 100872 Pa
	参数配置
	通讯地址 6 修 改 校正表条目:0
	原始值 0 原始值 校正值

修改过后,如果需要再次与该设备进行通讯,"系统设置"-"目的地址"右侧填写"6"

4. 无风初始化

确保设备放置在无风的环境下。选择"无风初始化"。等待无风初始化成功,等待时间为5到20秒。

· 设备列表	系统设置 端口: COM5 V 关闭 目的地址: 1
	测量数据 风速: 0.00 m/s 风向: 0 ° 刷新数据
	温度: 23.59 ℃ 湿度: 48.85 % 自动刷新
	气压: 100893 Pa
	参数配置 通讯地址 1 修 改 校正表条目:0
	原 始 值 0 原始值 校正值
	校正值 0 修改 •
	刷新参数 夏位设备
	设备SN:
	读SN
Send: 16:59:52—:01 05 开始无风初始化,请等待. Rec: 16:59:52—:01 05 无风初始化成功!	00 01 FF 00 DD FA ! 00 01 11 11 50 56

Rec : 16:59:59-:01 05 00 01 00 00 9C 0A

5. 软件复位

单击"复位设备"会使设备重新启动一次。此命令没有返回。

6. 刷新参数

单击"刷新参数",刷新当前设备通讯地址,校正表条目,校正表内容。

7. 写入校准表

在风速校准过程中,利用配置软件可以方便准确的逐条录入校正表。

- "原始值"位置输入风速仪原始值。
- "校正值"位置输入风洞风速值。

单击"修改"后,将此信息录入设备中。

例如将原始值为 0.49m/s 修正为 0.5m/s,按下图举例说明。

参数配置 通讯地址	1	修改	校正表	条目: 0	
原始值	0.49			原始值	校正值
校正值	0.5	修改	•		
刷新	参数	无风初始化 复位设备			
设备SN: 4	A530106190	70907			
读SN					

单击"刷新参数"后,右侧校正表条目变为1,校准表内容也会显示出来。

参数配置		
通讯地址 1	1 修改 校正表条目:1	
原始值	0 原始值	校正值
校正值	0 修改 ▶ 0.49	0.50
Rucit	无风初始化 •	
物明末月金の	复位设备	

需要录入多条校准表,只要重复当前操作,逐条将校准表写入即可。配置

软件会自动将校准表按照从小到大升序排列。

8. 删除校准表

在校正表区域,通过右键"删除选中"可删除选定(蓝色数据所在行)的一条校准表,也可以通过"清空所有"同时删除全部校准表。

通讯地址 1	修改	校正報	表条目 : 3	
原始值			原始值	校正值
校正值	修改		0.49	0.50
	无风初始化	•	11.60	12.00
刷新藝数	复位设备		25.20	25.00
设备SN: 4A53010619	070907	*		
		 	删除ì	先中
 读SN			- · · · · · · · · · · · · · · · · · · ·	

删除校准表后,通过"刷新参数"确认删除成功。

9. 设备序列号

单击"读 SN"读取当前设备序列号。此号码为产品出厂唯一识别编号,只可查看,不可更改。

10. 查看命令与数据

配置软件最下方,按照十六进制数据,展示串口发送命令与接收数据。在进行系统集成时,如果不清楚 MODBUS 访问方式,可以使用本软件快速对设备进行操作,并观察通讯内容。协助工程师快速掌握本产品的使用。

六、MODBUS 寄存器说明

进行软件操作前,首先保证数据线与电源线连接正确。给产品通电,通过 RS485 接口或串口与本仪器进行通讯。串口通讯波特率为 9600bps, 8 位数据,1 位停止,无奇偶校验,无流控制器。软件操作符合 Modbus 通讯协议。

可以使用本公司提供的软件,快速对设备进行数据读取,参数配置,状态查 询等操作。也可以通过用户自己软件,按照 Modbus 通讯协议访问设备内部寄存 器。

1. 线圈说明

根据 MODBUS 协议,可以使用 0x01 功能码对线圈状态进行查询,通过 0x05 功能码对线圈状态进行修改。

本设备线圈定义如	▶:	
线圈地址	线圈说明	访问限制
0x00	保留功能	只读
0x01	无风初始化	只写
0x02	清空校正表	只写
0x03	设备复位	只写
其它	保留功能	_

2. 保持寄存器说明

根据 MODBUS 协议,可以使用 0x03 功能码对保持寄存器进行查询,通过 0x06 功能码对保持寄存器进行修改。也可以通过 0x10 功能码操作连续的多 个寄存器。

保持寄存器地址	保持寄存器说明	访问限制			
0x00	新增校正表原始值	可读可写 *1 *2			
0x01	新增校正表校正值	可读可写 *1 *2			
0x02	删除指定校正表	可读可写 *1 *3			
0x03	校正表数目	可读可写			
0x04	通讯地址	可读可写			
0x05	保留功能	_			
0x06	校正表第1条原始值	可读可写 *4			
0x07	校正表第1条校正值	可读可写 *4			
0x08	校正表第2条原始值	可读可写 *4			

本设备保持寄存器定义如下:

0x09	校正表第2条校正值	可读可写 *4
OxOA	校正表第3条原始值	可读可写 *4
0x0B	校正表第3条校正值	可读可写 *4
OxOC	校正表第4条原始值	可读可写 *4
OxOD	校正表第4条校正值	可读可写 *4
OxOE	校正表第5条原始值	可读可写 *4
0x0F	校正表第5条校正值	可读可写 *4
0x10	校正表第6条原始值	可读可写 *4
0x11	校正表第6条校正值	可读可写 *4
0x12	校正表第7条原始值	可读可写 *4
0x13	校正表第7条校正值	可读可写 *4
0x14	校正表第8条原始值	可读可写 *4
0x15	校正表第8条校正值	可读可写 *4
0x16	校正表第9条原始值	可读可写 *4
0x17	校正表第9条校正值	可读可写 *4
0x18	校正表第10条原始值	可读可写 *4
0x19	校正表第10条校正值	可读可写 *4
其它	保留功能	_

备注:

*1: 读取时,返回 0x00。

- *2: 无论使用功能码 0x06 写单个保持寄存器还是使用功能码 0x10 写连续寄存器,只要地址 0 和 1 的内容都不为 0,就 向已有的校正表中插入这条数据。
- *3: 删除校正表索引从 0 开始,即删除索引 0 指删除第一条校 正表。
- *4: 写入校正表建议使用"新增校正表原始值"与"新增校正 表校正值"的方法进行,设备内部会根据校准表原始值自 小至大升序排列。如果用户对这部分自行修改,请保证校 正表的数据按照由小到大的顺序进行排列,保证地址 0x03 (校正表数目)的数值是正确的。校正表中的数值包含两 位小数。

3. 输入寄存器说明

根据 MODBUS 协议,可以使用 0x04 功能码对输入寄存器进行查询。 本设备输入寄存器定义如下:

保持寄存器地址	保持寄存器说明	访问限制
0x00	风速值 (校正后的风速值)	只读
0x01	风向值	只读

0x02	温度值	只读
0x03	湿度值	只读
0x04	大气压值 (低位)	只读
0x05	大气压值 (高位)	只读
0x06	风速值 (校正前的原始值)	只读
0x07	保留功能	_
0x08	保留功能	_
0x09	保留功能	_
OxOA	产品序列号第1、2字节	
0x0B	产品序列号第3、4字节	
0x0C	产品序列号第5、6字节	
OxOD	产品序列号第7、8字节	

七、风速仪的校准

1. 风速校零

在产品出厂前,设备都会进行多次零点的校准,即"校零"工作。但是 由于具体应用环境的变化,在设备安装过后,也还会出现零点少许偏移,针 对要求严格的场合,我们需要对零点进行校准。

校准零点的第一步,将设备放置在无风的环境下。已经安装的设备,可 以选择在设备外部套上防风罩,静置一下,使设备测风风道内空气停止流动。 即此刻认为真实风速是零。

第二步,启动设备,启动设置软件,选择"无风初始化"按钮。等待返回,即可完成"校零"的工作。校零成功后,可多次获取风速值数据,观察确认风速数据回到了零点。否则重复"无风初始化"操作。

串口	内容(十六进制)	说明
校零命令	01 05 00 01 FF 00 DD FA	向线圈地址 0x01 地址中写 1,代表 启动校零工作。
返回数据1	01 05 00 01 11 11 50 56	此处有返回,代表设备启动了校零 工作,但是不代表校零完成。
等待 5-20 秒,此时请耐心等待,不要进行其它操作。		
返回数据2	01 05 00 01 00 00 9C 0A	代表设备校零成功。
返回数据3	01 05 00 01 FF FF 9D BA	代表设备校零失败。

用户也可以使用以下串口命令,完成同样的工作。

如果校正零点发生错误,可能由以下原因造成。可以按照下表推荐方法进行相应处理。

发生现象	可能的原因	处理办法
没有返回 "返回数据1"	信号线没有连接或电源没有连接。设 备没有正确启动。	重新连接信号线, 使设备正常工作, 重新校正零点。
有"返回数据2" 但是读取到非0风速	在校零过程中,如果设备没有套防风 罩,测风风道中持续有风经过,校零	将设备放置在无风 环境中,重新校正

	操作也会返回成功。校零工作类似于 电子秤的"去皮"功能,如果将当前 非零风速认为是零,后续测量会产生 持续的偏差。	零点。
有"返回数据3"	在超声波换能器表面有水珠凝结。	将水晒干,重新校 正零点。
有"返回数据3"	在测风风道中有杂物,遮挡了超声波 换能器,干扰了风速测量。	清除测风风道中的 杂物,重新校正零 点。
有"返回数据3"	测风超声波换能器损坏,或内部电路 损坏。	设备需要更换或返 厂维护。

2. 风速校准

如果对风速测量的准确性有严格的要求,可以到中国计量院或类似有资质的场所进行风速仪的校准。通过向本设备写入校准表的方法,使风速测量误差减小。

在校准风速时,请按照以下步骤进行操作。

第一步,清除全部已有的校准表。

第二步,按照"风速校零"提供的方法进行校零。

第三步,将风速仪放置在标定风速下,记录标准风速与本机测量的原始数据。

第四步,将第三步记录的标准风速与本机测量的原始数据写入校准表。

第五步,将风速仪放置在标定风速下,记录标准风速与本机的校准后数据。

1.1 清除校准表

在风速校准前,首先确认风速校准表是空的。即确认以下情况:

- 校准表数目,保持寄存器地址 0x03 内容为 0x00;
- 校准表内容为空,保持寄存器地址 0x06 到 0x19 内容均为 0x00;

此操作可以通过配置软件的"清除校正表"来完成,也可以通过用户 MODBUS 命令完成。

1.2 风速校零

按照"风速仪的校准-风速校零"提供的方法,对风速仪校零。

1.3 风速标定

将风速仪放在风洞测风口,在风洞风速稳定的情况下,记录风洞的风速值, 记为"风洞数据1",同时记录本风速仪测量数据,记为"原始数据1"。

调整风洞风速,我们可以记录下"风洞数据 2"、"原始数据 2", "风洞数据 3"、"原始数据 3" ……"风洞数据 10"、"原始数据 10"。

标定数据的多少可以根据环境要求的精度选择。普通环境监测,使用一组到 三组数值即可,高精度的测量,标定需要五组到七组数据。本设备可最多支持十 组数值。

1.4 写入校准表

将上一步测量到的数据写入本设备。风洞数据作为校准数据,本风速仪数据 作为原始数据。

保持寄存器地址	保持寄存器说明	写入内容
0x03	校正表数目	Ν
0x06	校正表第1条原始值	原始数据1
0x07	校正表第1条校正值	风洞数据1
0x08	校正表第2条原始值	原始数据 2
0x09	校正表第2条校正值	风洞数据 2
OxOA	校正表第3条原始值	原始数据 3
0x0B	校正表第3条校正值	风洞数据 3
0x0C	校正表第4条原始值	原始数据 4
OxOD	校正表第4条校正值	风洞数据 4
OxOE	校正表第5条原始值	原始数据 5
0x0F	校正表第5条校正值	风洞数据 5
0x10	校正表第6条原始值	原始数据 6
0x11	校正表第6条校正值	风洞数据 6
0x12	校正表第7条原始值	原始数据7
0x13	校正表第7条校正值	风洞数据7
0x14	校正表第8条原始值	原始数据8
0x15	校正表第8条校正值	风洞数据 8
0x16	校正表第9条原始值	原始数据 9
0x17	校正表第9条校正值	风洞数据 9
0x18	校正表第10条原始值	原始数据 10
0x19	校正表第10条校正值	风洞数据 10

上表中 N = 1, 2, ……, 10。有几条校准数据就写几。"原始数据 1"到"原始数据 N"按照从小到大的升序排列。"原始数据"和"风洞数据"都是按照两字节十六进制表示。当风速值单位是"米/秒"时,先将数据乘以一百,再按照

十六进制写入寄存器即可。

例如有3条校准数据,N=3。校准数据与原始数据如下:

原始数据 1 = 0.49m/s	风洞数据1=0.5m/s
原始数据 2 = 11.6m/s	风洞数据 2 = 12m/s
原始数据 3= 25.2m/s	风洞数据 3 = 25m/s

写入校准表的内容为:

保持寄存器地址	保持寄存器说明	写入内容
0x03	校正表数目	3
0x06	校正表第1条原始值	0x0031
0x07	校正表第1条校正值	0x0032
0x08	校正表第2条原始值	0x0488
0x09	校正表第2条校正值	0x04B0
OxOA	校正表第3条原始值	0x09D8
OxOB	校正表第3条校正值	0x09C4
0x0C	校正表第4条原始值	0x0000
OxOD	校正表第4条校正值	0x0000
OxOE	校正表第5条原始值	0x0000
••••	••••	•••••
0x19	校正表第10条校正值	0x0000

校准表的数据请按照升序排列,否则会导致校准产生不确定的结果。不建议 用户直接对以上地址进行直接写入操作,建议用户通过地址 0x00,0x01 进行操作, 风速仪会对用户的数据自行排序和更新。两条相近的数据(无论是原始数据还是 校正数据相差 0.25m/S 的)会被合并成一条校正数据。

1.5 确认校准数据

在成功写入校准表后,可以读取相应保持寄存器,确定写入成功。在有校准 表的情况下,本仪器输出的风速值是经过校准表分段线性修正过的数值。

确认校准后的数据需要在风洞中进行,记录风洞风速值与校正过的风速值,确定测量误差在需求以内。如果误差过大,需要重复"风速校准"过程。

生产厂家:北京中科银河芯有限责任公司 联系电话:010-82995917 手 机:15810913389 公司网站:www.galaxy-cas.com 通信地址:北京市朝阳区北土城西路3号

致谢!

感谢您选购本公司产品,如有其它疑问请与您所在地的经销商联系。