

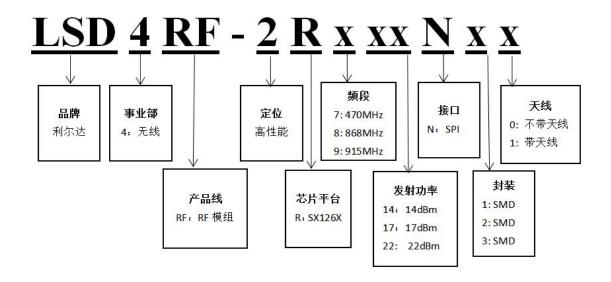
LSD4RF-2R 系列

LSD4RF-2R 系列模组是利尔达科技集团推出的新一代 LoRa 扩频射频收发 SPI 模块,具有体积极小、功耗极低、性价比极高等特点。该系列模组都是基于 SEMTECH 公司射频集成芯片 SX126X 开发,是一款高性能物联网无线收发器,其特殊的 LoRa 调试方式可大大增加通信距离,可广泛应用于各种场合的短距离物联网无线通信领域。可根据实际应用情况有多种天线方案可供选配,模块未配置微控制芯片,主要用于客户二次开发。

前言 浙江利尔达物联网技术有限公司提供该文档内容用以支持其客户的产品设计。客户须按照文档中提供的规范,参数来设计其产品。由于客户操作不当而造成的人身伤害或财产损失,本公司不承担任何责任。 在未声明前,利尔达公司有权对该文档进行更新。

版权申明 本文档版权属于利尔达公司,任何人未经我公司允许复制转载该文档将承担法律责任。

版权所有 © 利尔达科技集团, 保留一切权利。


Copyright © Lierda Science & Technology Group Co., Ltd

文件修订历史

版本	日期	作者	变更描述
Rev01	2018-12-29	成锋	初始版本
Rev02	2019-06-05	成锋	修改 LSD4RF-2R714N10 相关参数(功率配置及规格)及增加各型号参数 配置说明

1 产品命名规则

2 产品特点

● 工作频段	470MHz~510MHz
	(LSD4RF-2R714N10 为 433MHz~510MHz)
● 支持多种调制方式	LoRa、FSK、GFSK 等调制方式可供选择
● 输入电压范围¹	
● 低发射电流	典型值 34mA (LSD4RF-2R714N10)
	典型值 47mA (LSD4RF-2R717N30)
	典型值 105mA (LSD4RF-2R722N20)
● 低接收电流	典型值 5.0mA (DC-DC 模式, Rx Boosted 开启)
● 低休眠电流	典型值 0.6uA
● 高接收灵敏度	典型值 -124dBm(SF=7,BW_L=125KHz)
● 发射功率	Max. 14±1 dBm (LSD4RF-2R714N10)
	Max. 20±1 dBm (LSD4RF-2R717N30)
	Max. 22 ± 1 dBm (LSD4RF-2R722N20)
● 通信接口	SPI 通信接口
● 超远传输距离 ²	2Km@250bps (LSD4RF-2R714N10)
	5Km@250bps (LSD4RF-2R717N30)
	6Km@250bps (LSD4RF-2R722N20)
● 超小尺寸	11.5*11.6*2.25 (mm)

 $^{^{1}}$ LSD4RF-2R717N30 实际输出功率达 17dBm 以上时,工作电压不可低于 2.4V; LSD4RF-2R722N20 实际输出功率达 22dBm 时,工作电压不可低于 3.1V;推荐工作电压使用典型值 3.3V;

² 该传输距离是指城市环境,LoRa 调制,对应产品在最大发射功率发射下。

3 适用场景

- ✔ 智能电表
- ✔ 供应链与物流
- ✔ 楼宇自动化
- ✓ 农业传感器
- ✔ 智能城市
- ✓ 零售商店的传感器
- ✓ 资产跟踪
- ✓ 路灯
- ✔ 停车传感器
- ✓ 环境传感器
- ✔ 医疗保健
- ✓ 安全及保安感应器
- ✓ 远程控制程序

4 选择指南

可以根据以下型号进行选择产品下单,具体产品规格可参考第5章节规格参数。

4.1 产品型号信息表

产品型号	产品特点³	封装	包装类型	每卷数量	备注
LSD4RF-2R714N10	14 dBm	SMD	卷带	1500 PCS	
LSD4RF-2R717N30	17 dBm	SMD	卷带	1500 PCS	
LSD4RF-2R722N20	22 dBm	SMD	卷带	1500 PCS	

表 4-1 产品下单具体型号

4.2 产品屏蔽罩标志

O Lierda

LoRa 470-R14

s/N:0SQ1751036958

图 4-2-1 LSD4RF-2R714N10

O Lierda

LoRa 470-R17

s/N:0sq1751036958

图 4-2-2 LSD4RF-2R717N30

O Lierda

LoRa 470-R22

s/N:0SQ1751036958

图 4-2-3 LSD4RF-2R722N20

Lierda: 品牌(固定丝印)LoRa XXX-RXX: 产品简称(固定丝印)S/N:XXXXXXXXXXXXXX: 产品流水号(不固定丝印)

³ 指该型号产品可以达到的**最大发射功率**的典型值,其中 LSD4RF-2R717N30 可在 17dBm 发射功率输出下做到功耗最优设置。但是可以支持输出最大功率为 20dBm.

5 规格参数

表 5-1 模块极限参数

主要参数	性	能	备注
工女多奴	最小值	最大值	一
电源电压 (V)	-0.5	+3.9	
最大射频输入功率(dBm)	-	+10	
工作温度(℃)	-40	+85	

表 5-2 模块工作参数4

	主要参数		性能		备注
			典型值	最大值	無 在
	てた 中口5 (V)	1.0	0.0	0.7	VBAT=2.4V for +17dBm (LSD4RF-2R717N30)
	工作电压 ⁵ (V)	1.8	3. 3	3. 7	VBAT=3.1V for +22dBm (LSD4RF-2R722N20)
	工作温度(℃)	-40	-	85	
	初始频偏(KHz)	-6.5	-	+6.5	
					LSD4RF-2R714N10
		433	-	510	用户可自定义工作频率
	工作频段(MHZ)				LSD4RF-2R717N30
		470	_	510	用户可自定义工作频率
					LSD4RF-2R722N20
		470	-	510	用户可自定义工作频率
					LSD4RF-2R714N10
		20	24	30	DC-DC模式, 10dBm发射
		25	34	38	DC-DC模式,14dBm发射
功	11 # L L > - / . \ 6				LSD4RF-2R717N30
耗	发射电流(mA) ⁶	42	47	55	DC-DC模式,17dBm发射
		50	60	70	DC-DC模式,18dBm发射
		60	65	75	DC-DC模式,19dBm发射
		65	90	105	DC-DC模式,20dBm发射

 $^{^{4}}$ 以上测试条件为,温度: 25℃,中心频率: 490MHz,工作电压: 3.3V,负载为 50Ω。

 $^{^{5}}$ LSD4RF-2R717N30 实际输出功率达 17dBm 以上时,工作电压不可低于 2.4V;LSD4RF-2R722N20 实际输出功率达 22dBm 时,工作电压不可低于 3.1V;推荐工作电压使用典型值 3.3V;

 $^{^{6}}$ 不同产品不同发射功率下,发射电流不一样,输出功率务必按照优化推荐设置,若设置与推荐值不符,可能出现功率及功耗不优,甚至出现模组损坏,请参考 第6章节 发射功率配置,对对应模组进行功率配置。

				LSD4RF-2R722N20			
	70	75	90	DC-DC模式, 17dBm发射			
	90	105	125	DC-DC模式, 22dBm发射			
接收电流 (mA)		5.0	6	DC-DC模式, Rx Boosted BW_L=125KHz,SF=7			
睡眠电流(uA)		0.6	2	寄存器值保存			
		LSD4RF-2R714N10					
	_	14	15	设置最大输出功率下的实际输出			
		LSD4RF-2R717N30					
功率(dBm) ⁷	_	19 21 设置最大输出功率下的		设置最大输出功率下的实际输出			
	16	17	18	优化功耗17dBm发射功率配置下的实际输出			
	LSD4RF-2R722N20						
	_	22	23	设置最大输出功率下的实际输出			
灵敏度(dBm)	-	-124	-	BW_L=125KHz, SF=7			
LoRa (bps)	_	_	62.5K	Max.for SF5 BW_L500KHz用户可编程自定义			
FSK (bps)	_	_	150K	用户可编程自定义			
周制方式	Lo	oRa/GFSK/F	rsk	用户可编程自定义			
妾口类型		邮票孔		1.27mm间距			
通讯协议		SPI		SPI通信允许最高速率16MHz			
	11. 5*11	.6*2.25mm	(详见图				
杉尺寸(mm) 		7-1)		<u>-</u>			
己寸精度	G	B/T1804-C	 级				
	睡眠电流(uA) T功率(dBm) Dware (dBm) LoRa (bps) FSK (bps) B制方式 安口类型 通讯协议 ECT (mm)	90 接收电流 (mA) — 睡眠电流 (uA) — 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	90 105 接收电流 (mA) - 5.0 睡眠电流 (uA) - 0.6 - 14 - 14 - 16 17 - 22 - 22 - 28 - 28 - 124 - 124 - 108 - 124 - 108	接收电流 (mA) - 5.0 6 睡眠电流 (uA) - 0.6 2 - 14 15 - 14 15 - 19 21 16 17 18 - 22 23 23 2数度 (dBm)124 LoRa (bps) 62.5K FSK (bps) 150K 調制方式 LoRa/GFSK/FSK 接口类型 邮票孔 通讯协议 SPI 11.5*11.6*2.25mm (详见图 7-1)			

6 发射功率配置

不同型号的产品的对应不同的匹配网络,同时对应着不同 PA 操作设置,应用时需要严格按照对应产品进行发射功率的配置,否则可能出现产品功耗不优、性能下降甚至损坏等情况。

6.1 LSD4RF-2R714N10 发射功率配置

LSD4RF-2R714N10 发射功率配置对应寄存器操作如表 6-1,使用时可以去配置改变 SetTxParams 参数值大小去改变实际输出功率大小,SetTxParams 设置范围为 $-3^{\sim}15$,配置为 15 时实际输出功率可达到最大值+14dBm;注意 paDutyCycle、hpMax、deviceSel、paLut 这四个寄存器值不可改变,否则会出现性能下降甚至模组损坏的可能;

⁷ 输出功率务必按照优化推荐设置,若设置与推荐值不符,可能出现功率及功耗不优,甚至出现模组损坏,请参考
第6章节发射功率配置,对对应模组进行功率配置。

表 6-1 LSD4RF-2R714N10 PA	人操作模式优化设置
--------------------------	-----------

实际输出功率		hWa	Jani as Cal	m a I +++	Value in	发射电流典型
(dBm)	paDutyCycle	hpMax deviceSel		paLut	SetTxParams	值 (mA)
14	0x04	0x06	0x00	0x01	15	34
10	0x04	0x06	0x00	0x01	10	24

配置参考代码如下:

```
Void SX126xSetTxParams( int8_t power, RadioRampTimes_t rampTime )
{
    uint8_t buf[2];
    if( power >= 14 )
        {
            power = 15;
        }
        else if( power < -3 )
        {
                power = -3;
        }
        SX126xSetPaConfig( 0x04, 0x06, 0x00, 0x01 );
        SX126xWriteRegister( REG_OCP, 0x38 ); // current max 140mA for the whole device buf[0] = power;
    buf[1] = ( uint8_t ) rampTime;
        SX126xWriteCommand( RADIO SET TXPARAMS, buf, 2 );</pre>
```

6.2 LSD4RF-2R717N30 发射功率配置

LSD4RF-2R717N30 发射功率推荐配置对应寄存器操作如表 6-2; 应用时根据需要功率及期望功耗按照推荐值进行设置,在对应功率下才能达到最优功耗,否则会出现性能下降或功耗偏大甚至模组损坏的可能;该产品实际最大输出功率典型值为 20dBm。

实际输出功率 Value in 发射电流典型 paDutyCycle hpMax deviceSel paLut (dBm) ${\tt SetTxParams}$ 值 (mA) 17 0x020x030x000x0122 47 18 0x030x050x000x01 22 60 19 0x020x070x000x01 22 65 20 0x04 22 90 0x070x000x01

表 6-2 LSD4RF-2R717N30 PA 操作模式优化设置

配置参考代码如下:


```
void SX126xSetTxParams( int8_t power, RadioRampTimes_t rampTime )
   uint8_t buf[2];
   if(power > 22)
      power = 20;
   else if ( power < -3 )
      power = -3;
   switch (power)
   case 20:
     power=22;
     SX126xSetPaConfig( 0x04, 0x07, 0x00, 0x01 );
      break;
   case 19:
     power=22;
     SX126xSetPaConfig( 0x02, 0x07, 0x00, 0x01 );
      break;
   case 18:
     SX126xSetPaConfig( 0x03, 0x05, 0x00, 0x01 );
   case 17:
     power=22;
     SX126xSetPaConfig(0x02,0x03,0x00,0x01);
   default:
     power = power + 5;
     SX126xSetPaConfig( 0x02, 0x03, 0x00, 0x01 );//0~17dBm
    SX126xWriteRegister(REG_OCP, 0x38); // current max 140mA for the whole device
    buf[0] = power;
buf[1] = ( uint8_t )rampTime;
     SX126xWriteCommand( RADIO_SET_TXPARAMS, buf, 2 );
```

6.3 LSD4RF-2R722N20 发射功率配置

LSD4RF-2R722N20 发射功率配置对应寄存器操作如表 6-3,使用时可以去配置改变 SetTxParams 参数值大小去改变实际输出功率大小,SetTxParams 设置范围为-3²²,配置为 22 时实际输出功率可达到最大值+22dBm;注意 paDutyCycle、hpMax、deviceSel、paLut 这四个寄存器值不可改变,否则会出现性能下降甚至模组损坏的可能;

输出功率(dBm)	paDutyCycle	hpMax	deviceSel	paLut	Value in	发射电流典型	
柳山为华(山川)	pabutycycie	прмах	devicebel.	ралис	SetTxParams	值 (mA)	
22	0x04	0x07	0x00	0x01	22	105	
17	0x04	0x07	0x00	0x01	17	75	

表 6-3 LSD4RF-2R722N20 PA 操作模式优化设置

配置参考代码如下:

```
Void SX126xSetTxParams( int8_t power, RadioRampTimes_t rampTime )
{
    uint8_t buf[2];
    if( power > 22 )
        {
            power = 22;
        }
        else if( power < -3 )
        {
             power = -3;
        }
        SX126xSetPaConfig( 0x04, 0x07, 0x00, 0x01 );
        SX126xWriteRegister( REG_OCP, 0x38 ); // current max 140mA for the whole device buf[0] = power;
    buf[1] = ( uint8_t )rampTime;
        SX126xWriteCommand( RADIO_SET_TXPARAMS, buf, 2 );
}</pre>
```

7 尺寸图及引脚定义

7.1 尺寸图

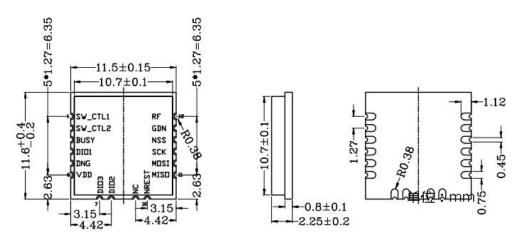


图 7-1 LSD4RF-2R 系列 尺寸图

7.2 引脚定义

表 7-2 LSD4RF-2R 系列 引脚定义

PIN	接口名	功能
	SW_CTL1	射频开关控制引脚1,TX: SW_CTL1=0, SW_CTL2=1
P1		RX: SW_CTL1=1, SW_CTL2=0
		Sleep: SW_CTL1=0, SW_CTL2=0
	SW_CTL2	射频开关控制引脚2, TX: SW_CTL1=0, SW_CTL2=1
P2		RX: SW_CTL1=1, SW_CTL2=0
		Sleep: SW_CTL1=0, SW_CTL2=0

Р3	BUSY	占线指示器
P4	DIO1	中断源映射引脚(详见SX1268数据手册)
P5	GND	电源地
P6	VDD	电源VDD
P7	DIO3	中断源映射引脚(详见SX1268数据手册)
P8	DIO2	中断源映射引脚(详见SX1268数据手册)
P9	NC	NC (浮空焊接,不要连接到GND)
P10	NREST	复位引脚,低电平有效
P11	MISO	SPI数据输出
P12	MOSI	SPI数据输入
P13	SCK	SPI时钟输入
P14	NSS	芯片SPI使能
P15	GND	电源地
P16	RF	射频输出
•		

8 LoRa 参数配置说明

8.1 SF、BW、CR 配置说明

- 1. SF 为 LoRa 调制的扩频因子,该参数可选配置为 SF5~SF12,该参数配置值越大,传输速率会越小,接收灵敏度会提高,即传输距离相对变远,可根据实际使用情况,计算所需等效速率从 SF5~SF12 范围选择配置。
- 2. BW 为 LoRa 调制的信号带宽,BW 值配置越小速率越慢,接收灵敏度会越高,即可以牺牲速率来换取更高的接收灵敏度,或者牺牲灵敏度来换取更高的速率。但是 BW 值不能无限制的设置小,本产品 BW 可选择值为 62. 5KHz、125KHz、250KHz、500KHz,其中 BW 为 62. 5KHz 在低速率(SF9 及 SF9以上)且较大数据包时(32 字节以上)不推荐使用,建议进行分包处理。

8.2 数据包大小选择建议

数据包最大字节设置可支持 255 字节,考虑实际使用情况,一包数据包字节数较大时,持续空中时间较长,容易受到干扰,特别是在低速率时可能影响更大,甚至可能出现无法通信情况。

通常建议在 LoRa®符号时间等于或大于 16.38 ms 时进行开启低数据速率优化,但当数据包字节数超过 64 字节时,SF12&BW500KHz,SF11 & BW250KHz 和 SF10 & BW125KHz 及 SF9&BW62.5KHz 这几组配置建议开启低数据速率优化,提高鲁棒性。(低速率优化主要影响通信速率,当开启时,通信有效速率会变慢,但可以提高鲁棒性,特别是在大数据包低速率情况下,通信不稳定时影响特别明显;当对速率要求不高,且对低速率优化是否开启无强制要求时,建议开启低速率优化。)

不同 SF 及 BW 设置时,最大数据包长度 (PL) 建议值,根据不同产品型号分别给出如表 8-1、表 8-2、表 8-3 所示,当需求数据包大于建议值时建议进行分包处理。

PL SF	62.5 KHz	125 KHz	250 KHz	500 KHz
5	255 bytes	255 bytes	255 bytes	255 bytes
6	255 bytes	255 bytes	255 bytes	255 bytes
7	255 bytes	255 bytes	255 bytes	255 bytes
8	255 bytes	255 bytes	255 bytes	255 bytes
9	64 bytes	255 bytes	255 bytes	255 bytes
10	64 bytes	64 bytes	255 bytes	255 bytes
11	64 bytes	64 bytes	64 bytes	255 bytes
12	禁用	64 bytes	64 bytes	64 bytes

表 8-1 LSD4RF-2R714N10 最大数据包长度建议值

PL SF	62.5 KHz	125 KHz	250 KHz	500 KHz
5	255 bytes	255 bytes	255 bytes	255 bytes
6	255 bytes	255 bytes	255 bytes	255 bytes
7	255 bytes	255 bytes	255 bytes	255 bytes
8	64 bytes	255 bytes	255 bytes	255 bytes
9	32 bytes	128 bytes	255 bytes	255 bytes
10	32 bytes	32 bytes	128 bytes	255 bytes
11	32 bytes	32 bytes	32 bytes	128 bytes
12	禁用	32 bytes	32 bytes	32 bytes

表 8-2 LSD4RF-2R717N30 最大数据包长度建议值

PL SF	62.5 KHz	125 KHz	250 KHz	500 KHz
5	255 bytes	255 bytes	255 bytes	255 bytes
6	255 bytes	255 bytes	255 bytes	255 bytes
7	128 bytes	255 bytes	255 bytes	255 bytes
8	64 bytes	128 bytes	255 bytes	255 bytes
9	32 bytes	64 bytes	128 bytes	255 bytes
10	32 bytes	32 bytes	64 bytes	128 bytes
11	32 bytes	32 bytes	32 bytes	64 bytes
12	禁用	32 bytes	32 bytes	32 bytes

表 8-3 LSD4RF-2R722N20 最大数据包长度建议值

注: PL 表示建议最大数据包长度, 黄色底纹表示 LoRa®符号时间等于或大于 16.38 ms 开启了低数据速率优化。

9 基本操作

9.1 典型应用电路

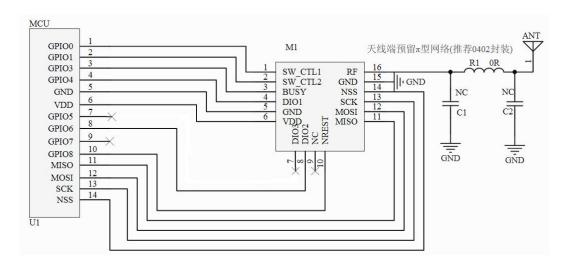


图 9-1 典型应用电路一

9.2 硬件布局注意事项

- 1. DIO 口尽量连接到 MCU 带外部中断的 IO 口。
- 2. 射频出口到天线焊盘走线尽可能短,要走50Ω阻抗线,并且需要包地,走线周围多打过孔。
- 3. 在允许情况下射频出口到天线焊盘部分增加π电路。
- 4. 天线周围需要净空,至少留出 5mm 的净空区域。
- 5. 注意接地量好,最好保证大面积铺地。
- 6. 远离高压电路、高频开关电路。
- 7. 可参考应用文档中《射频 PCB LAYOUT 设计规则(适用 sub-1GHZ 及蓝牙模块)》进行布局走线;

9.3 软件操作

在用户的电路板上插入模块,使用微控制器与模块进行 SPI 通讯,通过 API 指令对其寄存器与收发缓存进行操作,即能完成无线数据收发功能。其中模块寄存器读写操作时序操作请参阅最新的 SX1268 数据手册。

API 指令详见 SX1268 数据手册, 利尔达 demo 例程中提供相应 API 指令函数。

10 常见问题

10.1 模块近距离也不能通信

- 确认发送和接收两边配置不一致, 配置不同不能正常通信。
- 电压异常, 电压过低会导致发送异常。
- 电池电量低, 低电量电池在发送时电压会被拉低导致发送异常。
- 天线焊接异常射频信号没有到达天线或者π电路焊接错误。

10.2 模块功耗异常

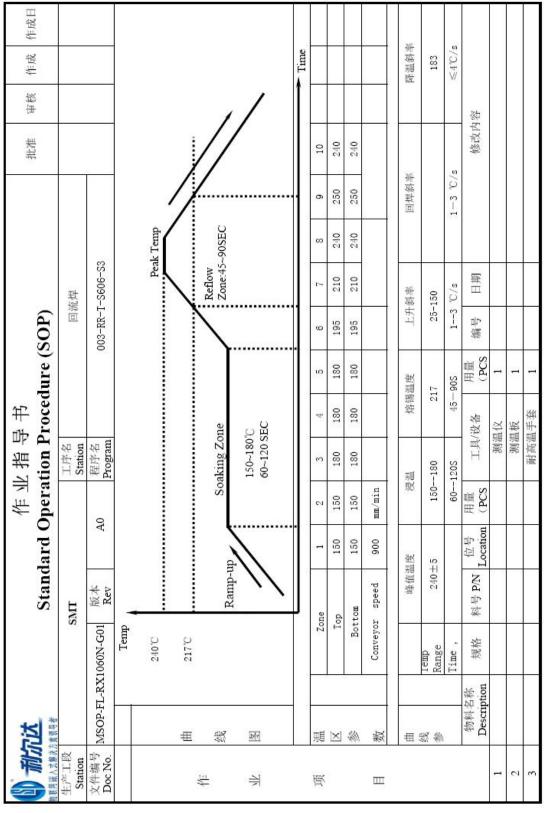
- 静电等原因导致模块损坏导致功耗异常。
- 在做低功耗接收时, 时序配置等不正确导致模块功耗没达到预期效果。
- 单独测模块或者 MCU 都正常, 联调就出现功耗异常这是由于 MCU 与射频模块的连接引脚没有处理好。
- 工作环境恶劣, 在高温高湿、低温等极端环境模块功耗会有波动。

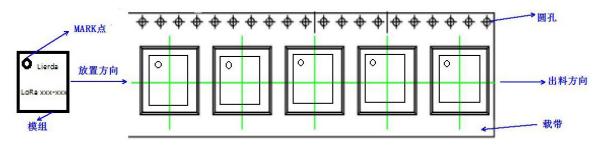
10.3 模块通信距离不够

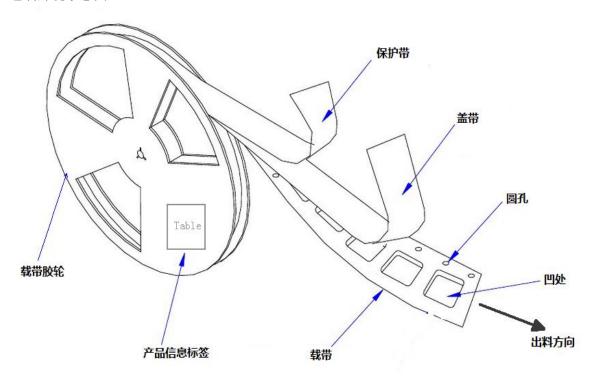
- 天线阻抗匹配没做好导致发射出去的功率很小。
- 天线周围有金属等物体或者模块在金属内导致信号衰减严重。
- •测试环境有其他干扰信号导致模块通信距离近。
- 供电不足导致模块发射功率异常。
- •测试环境恶劣,信号衰减很大。
- •模块经过穿墙等环境后再与另一端通信,墙体等对信号衰减很大,大部分信号是绕射过墙体信号衰减大。
- 模块太靠近地面被吸收和反射导致通信效果变差。

11 回流焊作业指导

注: 此作业指导书仅适合无铅作业,仅供参考。




图 11-1 回流焊作业指导


12 包装

本产品使用卷带包装方式进行包装,包装示意图及说明如下:

产品放置方向示意图:

包装外观示意图:

13 联系我们

浙江利尔达物联网技术有限公司始终以为客户提供最及时、最全面的服务为宗旨,如需任何帮助,请 随时联系我司相关人员,或按如下方式联系:

邮箱: RF_Service@lierda.com

论坛: http://lierda newbbs.lierda.com/forum.php