Sun	lord

Page 1 of 11

SPECIFICATIONS

Customer	广汇虹
Product Name	Wire Wound SMD Power Inductor
Sunlord Part Number	SPH252012HR22MT
Customer Part Number	

 $[\square New Released, \square Revised]$

[This SPEC is total 11 pages.] [ROHS Compliant Parts] SPEC No: SPH09180040

Shenzhen Sunlord Electronics Co., Ltd.

Address: Sunlord Industrial Park, Dafuyuan Industrial Zone, Baoan, Shenzhen, China518110Tel: 0086-755-29832660Fax: 0086-755-82269029E-Mail: sunlord@sunlordinc.com

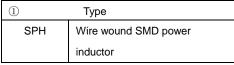
	For Customer approval Qualification Status:	Only】 Full	Restricted	Date: Rejected	
	Approved By	Ve	erified By	Re-checked By	Checked By
Co	omments:				

[Version change history]

Rev.	Effective Date	Changed Contents	Change Reasons	Approved By
01	May.31, 2018	New release	New release	Qintian Hou

Sunlord Categories: general confidential

1 Scope


This specification applies to the SPH252012HR22MT wire wound SMD power inductor.

2 Product Description and Identification (Part Number)

1) Description:

SPH252012HR22MT of Wire wound SMD power inductor.

2) Product Identification (Part Number)

3	I	Feature type
	Н	High Type Material

(5)		Inductance Tolerance						
	М		±20%					
	IVI		12070					

2 External	Dimensions(L×W×H) [mm]
252012	2.5X2.0X 1.2

4	Nominal	Inductance
Example		Example
R22		0.22uH

6	Packing
т	Tape Carrier Package

3 Shape and Dimensions

Dimensions and recommended PCB pattern for reflow soldering, please see Fig.3-1, Fig. 3-2 and Table 3-1.

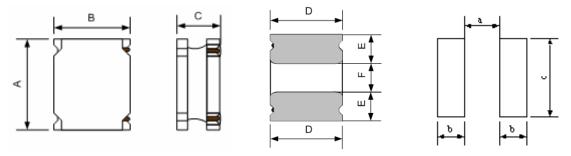
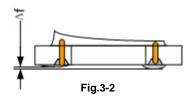



Fig.3-1

[Table 3-1] (Unit: mm)

Series	А	В	С	D	E	F	а	b	С
SPH252012H	2.5±0.2	2.0±0.2	1.2Max.	2.00±0.2	0.8±0.2	0.8±0.2	0.8 Тур.	0.85 Тур.	2.0 Тур.

Δf: Clearance between terminal and the surface of plate must be 0.1mm max when coil is placed on a flat plate.

4 Electrical Characteristics

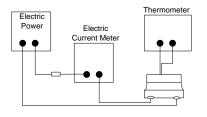
Please refer to Item 6.

- 1) Operating and storage temperature range (individual chip without packing): -40°C ~ +125°C (Including Self-heating)
- 2) Storage temperature range (packaging conditions): -10 $^\circ\!C$ ~+40 $^\circ\!C$ and RH 70% (Max.)

5 Test and Measurement Procedures

5.1 Test Conditions

- 5.1.1 Unless otherwise specified, the standard atmospheric conditions for measurement/test as:
 - a. Ambient Temperature: $20\pm15^{\circ}$ C
 - b. Relative Humidity: 65±20%
 - c. Air Pressure: 86kPa to 106kPa


- 5.1.2 If any doubt on the results, measurements/tests should be made within the following limits:
 - a. Ambient Temperature: 20±2°C
 - b. Relative Humidity: 65±5%
 - c. Air Pressure: 86kPa to 106kPa

5.2 Visual Examination

Inspection Equipment: 10X microscope

5.3 Electrical Test

- 5.3.1 Inductance (L)
 - a. Refer to Item 6.Test equipment: WK3260B LCR meter or equivalent.
 - b. Test Frequency and Voltage: refers to **Item 6**.
- 5.3.2 Direct Current Resistance (DCR)
 - a. Refer to Item 6.
 - b. Test equipment: HIOKI 3540 or equivalent.
- 5.3.3 Saturation Current (Isat)
 - a. Refer to Item 6.
 - b. Test equipment: WK3260B LCR meter or equivalent.
- 5.3.4Temperature rise current (Irms)
 - a. Refer to Item 6.
 - b. Test equipment (see Fig. 5.3.4-1, Fig. 5.3.4-2): Electric Power, Electric current meter, Thermometer.
 - c. Measurement method
 - 1. Set test current to be 0 mA.
 - 2. Measure initial temperature of choke surface.
 - 3. Gradually increase current and measure choke temperature for corresponding current.
 - 4. Definition of Temperature rise current: DC current that causes the temperature rise (Δ T) from ambient temperature

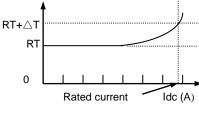


Fig. 5.3.4-2

Fig. 5.3.4-1

5.3.5 Self-resonant frequency(SRF)

- a. Refer to Item 6.
- b.Test equipment: Agilent E4991A+16197or equivalent

Sunlord Cate

Electrical Characteristics

6 Electric	al Characteristics									
Customer P/N	Part Number	Inductance	Min. Self-resonant	DC Resistance		Saturation Current		Heat Rating Current		
		@1MHz,1V	frequency	Max.	Тур.	Max.	Тур.	Max.	Тур.	Marking
	Units	μH	MHz	Ω	Ω	А	А	А	А	
	Symbol	L	SRF	DC	CR	ls	at	Irr	ns	-
	SPH252012HR22MT	0.22±20%	300	0.024	0.020	6.70	7.60	3.20	3.70	N/A

Note: %1 : Rated current: Isat or Irms, whichever is smaller;

%2: Saturation Current: Max. Value, DC current at which the inductance drops less than 30% from its value without current; Typ. Value, DC current at which the inductance drops approximate 30% from its value without current;

%3: Irms: DC current that causes the temperature rise (ΔT) from 25°C ambient temperature.

For Max. Value, $\Delta T < 40^{\circ}$ C; for Typ. Value, ΔT is approximate 40° C.

The part temperature (ambient + temp. rise) should not exceed 125 °C under worst case operating conditions. Circuit design, component placement, PCB trace size and thickness, airflow and other cooling provisions all affect the part temperature. Part temperature should be verified in the end application.

Typical Electrical Characteristics

7 Structure

The structure of SPH252012H product, please refer to Fig.7-1 and Table 7-1.

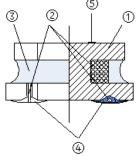
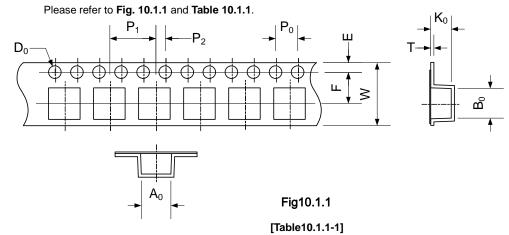


Fig. 7-1

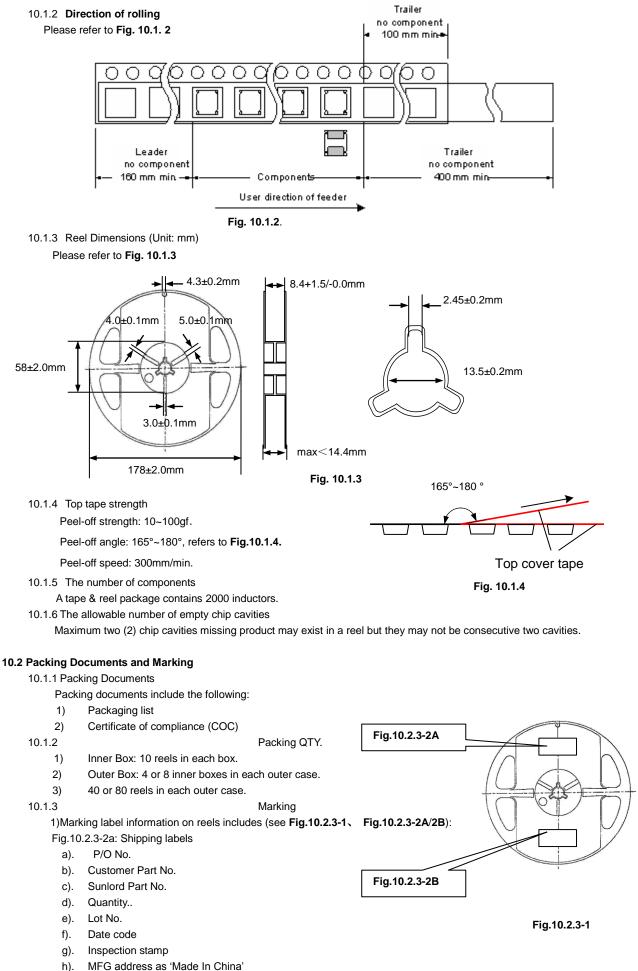
		[Table 7-1]
No.	Components	Material
1	Ferrite Core	Ni-Zn Ferrite
2	Wire	Polyurethane system enameled copper wire
3	Magnetic Glue	Epoxy resin and magnetic powder
4)	Electrodes	AgNiSn or FeNiCu + Sn Alloy
(5)	Marking	Nitrocellulose

8 Product Marking

N/A


Items	Requirements	Test Methods and Remarks
9.1 Terminal Strength	No removal or split of the termination or other defects shall occur.	 Solder the inductor to the testing jig (glass epoxy board shown in Fig.9.1-1) using eutectic solder. Then apply a force in the direction of the arrow. 10N force. Keep time: 5s
9.2 Resistance to Flexure	No visible mechanical damage.	 Solder the chip to the test jig (glass epoxy board) usin eutectic solder. Then apply a force in the direction shown as Fig.9.2-1. Flexure: 2mm Pressurizing Speed: 0.5mm/sec Keep time: 30±1s Test board size: 100X40X1.0 Land dimension: Please see Fig. 3-1
9.3 Vibration	 No visible mechanical damage. Inductance change: Within ±10% 	 Solder the chip to the testing jig (glass epoxy board shown as the following figure) using eutectic solder. The chip shall be subjected to a simple harmonic motion having total amplitude of 1.5mm, the frequence being varied uniformly between the approximate limits of 10 and 55 Hz. The frequency range from 10 to 55 Hz and return to 1 Hz shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours).
9.4 Temperature coefficient	Inductance change: Within ±20%	 Temperature: -40°C~+125°C With a reference value of +20°C, change rate shall be calculated
9.5 Solderability	90% or more of electrode area shall be coated by new solder.	 The test samples shall be dipped in flux, and then immersed in molten solder. Solder temperature: 245±5°C Duration: 5±1 sec. Solder: Sn/3.0Ag/0.5Cu Flux: 25% resin and 75% ethanol in weight Immersion depth: all sides of mounting terminal shall be immersed
9.6 Resistance to Soldering Heat	 No visible mechanical damage. Inductance change: Within ±10% 	 Re-flowing Profile: Please refer to Fig. 9.6-1. Test board thickness: 1.0mm Test board material: glass epoxy resin The chip shall be stabilized at normal condition for 1~ hours before measuring 260 °C 260 °C Peak 260 °C max Max Ramp Up Rate=3 °C/sec. Max Ramp Down Rate=6 °C/sec 20 °C 150 °C <u>60 ~ 120 sec</u> <u>60 ~ 120 sec</u> Fig. 9.6-1

9.7	① No visible mechanical damage.	① Temperature and time: -40±3℃ for 30±3 min→125℃
Thermal Shock	② Inductance change: Within ±10%	for 30±3min, please refer to Fig. 9.7-1.
		2 Transforming interval: Max. 20 sec
	30 min. 30 min.	③ Tested cycle: 100 cycles
	Ambient	④ The chip shall be stabilized at normal condition for
		1~2 hours before measuring
	Temperature 30 min.	
	20sec. (max.)	
	Fig.9.7-1	
9.8	No visible mechanical damage	① Temperature: -40±3℃
Resistance to Low	② Inductance change: Within ±10%	② Duration: 1000 ^{±24} hours
Temperature		③ The chip shall be stabilized at normal condition for
		1~2 hours before measuring
9.9	 No mechanical damage. 	① Temperature: 125±2℃
Resistance to High	② Inductance change: Within ±10%	② Duration: 1000 ^{±24} hours
Temperature		③ The chip shall be stabilized at normal condition for
		1~2 hours before measuring.
9.10	① No mechanical damage.	① Temperature: 60±2°C
Damp Heat	② Inductance change: Within ±10%	2 Humidity: 90% to 95%RH
		③ Duration: 1000 ^{±24} hours
		④ The chip shall be stabilized at normal condition for
		1~2 hours before measuring
9.11	① No mechanical damage.	① Temperature: 60±2℃
Loading Under	② Inductance change: Within ±10%	② Humidity: 90% to 95% RH
Damp Heat		③ Applied current: Rated current
		4 Duration: $1000^{\pm 24}$ hours
		5 The chip shall be stabilized at normal condition for
		1~2 hours before measuring
9.12	① No mechanical damage.	① Temperature: 85±2℃
Loading at High	② Inductance change: Within ±10%	② Applied current: Rated current
Temperature		③ Duration: 1000 ^{±24} hours
		④ The chip shall be stabilized at normal condition for
		1~2 hours before measuring


10 Packaging, Storage and Transportation

10.1 Tape and Reel Packaging Dimensions

10.1.1 Taping Dimensions (Unit: mm)

Series	A ₀	B ₀	W	E	F	P ₀	P ₁	P ₂	Do	Т	K ₀
SPH252012H	2.45±0.05	2.75±0.05	8.0±0.3	1.75±0.1	3.5±0.05	4.0±0.1	4.0±0.1	2.0±0.05	1.5+0.1/-0.0	0.25±0.03	1.55±0.05

Sunlord Categories: general confidential Specifications for Wire Wound SMD Power Inductor Page 9 of 11 Fig.9.2.3-2b: Production labels Fig.9.2.3-2b: Production labels Fig.9.2.3-2b: Production labels Fig.9.2.3-2b: Production labels

- a). P/O No.
- b). Quantity..
- c). Lot No.
- d). Inspe No

a).

b).

a).

b).

i)

ii) iii)

iv)

v) vi)

vii)

viii)

ix)

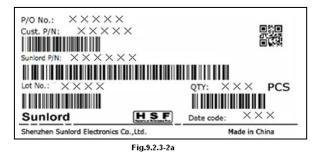
Of total 10 cases

- e). Inspection stamp
- f). MFG address as 'Made In China'.

2)Marking label information on inner box

3)Marking on outer case (see Fig.10.2.3-5~7): Out case size pleases reefers to Table 10.2.3-2.

Manufacturer: Sunlord ID:


Customer Manufacturer

Date code C/No.

P/O No.

Quantity.

g). sequence number

Inner box please refers to Fig.10.2.3-3 and Table 10.2.3-1

Marking Label on inner box(see Fig.10.2.3-4)

"Shenzhen Sunlord Electronics Co., Ltd."

Example; "1/10" means that this case is the 1st one

Packing label include the following:

Customer Part No.

Sunlord Part No.

Inspection Stamp.

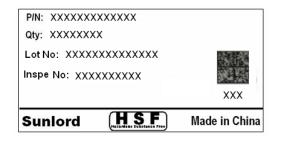


Fig.9.2.3-2b

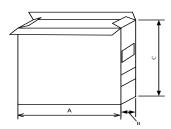


Fig.10.2.3-3

Packaging type	A(mm)	B(mm)	C(mm)
Inner box	180	120	180

[Table 10.2.3-1]

Packaging type	L(mm)	W(mm)	H(mm)
Type1	505	378	200
Type2	380	260	200

[Table 10.2.3-2]

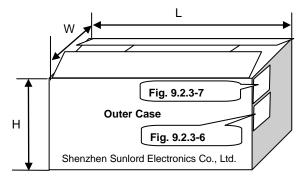
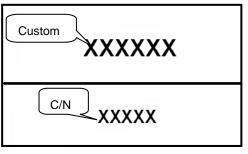
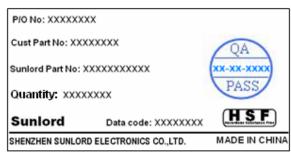




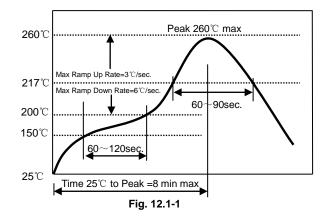
Fig. 10.2.3-5

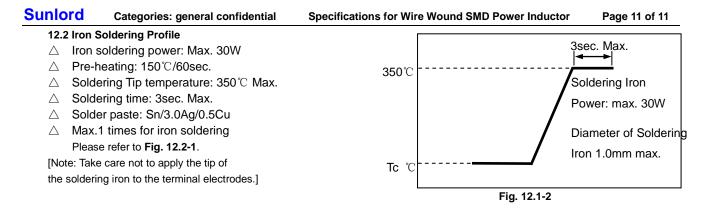
P/O NO.: XXXXXXXXXX Qty of Reel: X Cust. PartNo.: XXXXXXXXXX Sunlord Part No: XXXXXXXXXX Quantity: XXX PCS Sunlord Date code: XXXXXXXX SHENZHEN SUNLORD ELECTRONICS CO.,LTD. MADE IN CHINA

Fig.10.2.3-4

Categories: general confidential

Specifications for Wire Wound SMD Power Inductor


11 Visual inspection standard of product						
File No: Effective date:		Appli	REV:02			
No.	Defect Item	Graphic	Rejection identification	Acceptance		
1	Core defect		The defect length/width (I or w) more than L/6 or W/6, NG.	AQL=0.65		
2	Core crack		Visual cracks, NG.	AQL=0.65		
3	Starvation		Resin starved length, <i>I</i> , more than L/2, NG. IF W >2mm, resin starved width, <i>w</i> , more than W/2, NG. IF W \leq 2mm, resin starved width, <i>w</i> , don't control.	AQL=0.65		
4	Excessive glue		The length, width or height of product beyond specified value, NG.	AQL=0.65		
5	Cold solder		Cold solders <i>I</i> more than 1 mm, NG.	AQL=0.65		
6	Solder icicle		 The height <i>H</i> of product beyond specified value, NG; The clearance Δ<i>f</i> beyond specified value listed in Item 5, NG; 	AQL=0.65		
7	Electrode uneven	Δf	The clearance Δf beyond specified value listed in Item 5 , NG;	AQL=0.65		


12 Recommended Soldering Technologies

12.1Re-flowing Profile:

- \triangle Preheat condition: 150 ~200°C/60~120sec.
- \triangle Allowed time above 217°C: 60~90sec.
- △ Max temp: 260°C
- △ Max time at max temp: 5sec.
 Solder paste: Sn/3.0Ag/0.5Cu
- △ Allowed Reflow time: 2x max Please refer to Fig. 12.1-1.

[Note: The reflow profile in the above table is only for qualification and is not meant to specify board assembly profiles. Actual board assembly profiles must be based on the customer's specific board design, solder paste and process, and should not exceed the parameters as the Reflow profile shows.]

13 Precautions

13.1 Surface mounting

- Mounting and soldering condition should be checked beforehand.
- Applicable soldering process to this product is reflow soldering only.
- Recommended conditions for repair by soldering iron:
 - Preheat the circuit board with product to repair at 150° C for about 1 minute. Put soldering iron on the land-pattern.
 - Soldering iron's temperature: 350 °C maximum/Duration: 3 seconds maximum/1 time for each terminal.
 - The soldering iron should not directly touch the inductor.
 - Product once removes from the circuit board may not be used again.

13.2 Handing

- Keep the products away from all magnets and magnetic objects.
- Be careful not to subject the products to excessive mechanical shocks.
- Please avoid applying impact to the products after mounted on pc board.
- Avoid ultrasonic cleaning.

13.3 Storage

- To maintain the solderability of terminal electrodes and to keep the packing material in good condition, temperature and humidity in the storage area should be controlled.
- Recommended conditions: -10°C~40°C, 70%RH (Max.)
- Even under ideal storage conditions, solderability of products electrodes may decrease as time passes. For this reason, product should be used with one year from the time of delivery.
- In case of storage over 6 months, solderability shall be checked before actual usage.

13.4 Regarding Regulations

- Any Class- I or Class- II ozone-depleting substance (ODS) listed in the Clean Air Act in US for regulation is not included in the products or applied to the products at any stage of whose manufacturing processes.
- Certain brominated flame retardants (PBBs, PBDEs) are not used at all.
- The products of this specification are not subject to the Export Trade Control Order in China or the Export Administration Regulations in US.

13.5 Guarantee

The guaranteed operating conditions of the products are in accordance with the conditions specified in this specification.

• Please note that Sunlord takes no responsibility for any failure and/or abnormality which is caused by use under other than the aforesaid operating conditions.

14 Supplier Information

14.1 Supplier:

Shenzhen Sunlord Electronics Co., Ltd.

14.2 Manufacturer:

Shenzhen Sunlord Electronics Co., Ltd.

14.3 Manufacturing Address:

Sunlord Industrial Park, Dafuyuan Industrial Zone, Guanlan, Shenzhen, China Zip: 518110