

Precision Power Distribution Switch

FEATURES

- Integrated 60mΩ Power MOSFET
- . 1µA Typical at Switch Off State
- Wide Input Voltage Range: 2.5V to 5.5V
- Fast Transient Response: 8µs
- 0.1ms Typical Rise Time
- . Reverse Current Flow Blocking
- Automatic output discharge at shutdown
- Deglitched Open-Drain Over-Current Flag Output (TMI6263A, TMI6263D, TMI6263E)
- . Thermal Shutdown Protection
- Hot Plug-In Application (Soft-Start)
- Two Enable polarities and four current levels
 - TMI6263AH: 2.0A/Enable HighTMI6263AL: 2.0A/Enable LowTMI6263CH: 1.5A/Enable HighTMI6263DH: 2.0A/Enable HighTMI6263EH: 2.5A/Enable High
 - TMI6263BH: ADJ /Enable High
- SOT-23-5 / TSSOP-8 Package

TYPICAL APPILCATION

GENERAL DESCRIPTION

The TMI6263 is a cost-effective, single P-MOSFET load switch with ultra-low R_{DS(ON)}, optimized for self-powered and bus-powered Universal Serial Bus (USB) applications. Input voltage from 2.5V to 5.5V, making it ideal for both 3V and 5V systems. A built-in P-channel MOSFET with true shutdown function to eliminate any reversed current flow across the switch. When output voltage is higher than input voltage, power switch is turned off. The TMI6263B offers a programmable current limit threshold between 200mA to2.4A via an external resistor.

APPLICATIONS

- USB Bus/Self Powered Hubs
- Battery-Charger Circuits
- Personal Communication Devices
- Notebook Computers

Figure 1. TMI6263AH/DH/EH Application Circuit with EN and nFLG

Figure 2. TMI6263BH Application Circuit with Adjustable ILIMIT and EN.

Figure 3. TMI6263CH Application Circuit with EN.

ABSOLUTE MAXIMUM RATINGS (Note 1)

Description	Value	Unit
IN Input Voltage Range	-0.3~7	V
All other pins Voltage Range	-0.3 to (VIN+0.3)	V
Junction Temperature	-40~160	°C
Storage Temperature Range	-65~150	°C
Junction-to-ambient Thermal Resistance (Note 2)	260(SOT23-5)	°C/W
Junction-to-case Thermal Resistance (Note 2)	120(SOT23-5)	°C/W
Lead TemperatureSoldering,10Sec	260	°C

PIN CONFIGURATION

Top Mark: TXXXXX (TXX: Device Code, XXX: Inside code)

Part Number	Package	Top mark	Quantity/ Reel
ТМІ6263АН	SOT-23-5	T17BXX	3000
TMI6263AL	SOT-23-5	T19AXX	3000
TMI6263DH	TSSOP-8	T17CXX	3000
ТМІ6263СН	SOT-23-5	T17AXX	3000
TMI6263EH	TSSOP-8	T17DXX	3000
TMI6263BH	SOT-23-5	T18AXX	3000

TMI6263

PIN FUNCTIONS

TMI6263A SOT23-5	TMI6263B SOT23-5	TMI6263C SOT23-5	TMI6263D TMI6263E MSSOP8	Name	Function
1	1	1	6,7,8	OUT	Switch Output Pin.
2	2	2	1	GND	Ground Pin
3			5	nFLG	Open-Drain Fault Flag Output.
4	4	3	4	EN/nEN	EN: High Enable. Not floating. nEN: Low Enable. Not floating.
5	5	4,5	2,3	IN	Power Input Pin
	3			ILIM	Current limit Set Pin

ESD RATINGS

Items	Description	Value	Unit
V _{ESD}	Human Body Model for all pins	±2000	V

JEDEC specification JS-001

RECOMMENDED OPERATING CONDITIONS

Items	Description	Min	Max	Unit
Voltage Range	IN	2.5	5.5	V
TJ	Operating Junction Temperature Range	-40	125	°C

ELECTRICAL CHARACTERISTICS (Note3)

$(V_{IN}=5V, C_{IN}=1\mu F, C_{OUT}=1\mu F, T_A = 25^{\circ}C.)$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IN}	Input Voltage		2.5		5.5	V
lα	Quiescent Supply Current	V _{IN} =5.0V, nEN=L, No load		30	60	μA
I _{SHDN}	Shutdown Input Current	V _{IN} =5.0V, nEN=H, No load		0.1	1	μA
I _{REV}	Reverse Leakage Current	V _{OUT} =5.0V, V _{IN} =0V		2	5	μA
V _{UVLO}	UVLO Threshold	V _{IN} rising		2	2.3	V
$V_{\text{UVLO}_{HY}}$	UVLO Hysteresis	V_{IN} falling		100		mV
nEN Section						
V_{nEN_H}	nEN Rising Threshold	V _{IN} =5.0V	1.5			V
V_{nEN_L}	nEN Falling Threshold	V _{IN} =5.0V			0.8	V
I _{nEN}	nEN Input Current	V _{EN} =5.0V or 0V	-0.5	5	10	μA
OUT Section	<u>.</u> 					
		R _{ILIM} =6.8kΩ (TMI6263B)	0.8	1	1.2	А
		6263A/D	2.1	2.5	3	Α
I _{LIM}	Limit Current	6263C	2	2.4	3	Α
		6263E	2	2.4	3	Α
V _{REVERSE}	Reverse Voltage Protection	V _{OUT} -V _{IN}	5	20	50	mV
T _{RISE}	Output Rise Time	CL=1uF, RL=100ohm		0.1		ms
T _{FALL}	Output Fall Time	CL=1uF, RL=100ohm		0.3		ms
T _{IOS}	Short Circuit Response time			12		μs
R _{DIS}	OUT Discharge Resistance			10		Ω
FLG(Fault fla	ag) section(TMI6263A,TMI626	3D,TMI6263E)				
V _{OL}	Output low voltage	I _{FLG} =1mA			180	mV
I _{FLG}	Continuous FLG sink				10	mA
I _{FLG_LEAK}		Off-state leakage			1	μA
T _{FLG}	Fault flag deglitch time			2.5		ms
Power Swite	ch	1	1	1		1
R _{DS_ON}		I _{OUT} =1A		60		mΩ
Thermal Shu	ıtdown	1				
T _{OTP}	Thermal Shutdown Threshold			150		°C
T _{OTP_HY}	Thermal Shutdown Hysteresis		1	20		°C

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Note 2: T_J is calculated from the ambient temperature T_A and power dissipation PD according to the following formula: $TJ = TA + (PD) \times (250^{\circ}C/W)$.

Note3: 100% production test at +25°C. Specifications over the temperature range are guaranteed by design and characterization.

Figure 4. Short Circuits Response time

Figure 5. test circuits

Note:

To exactly identify the short circuit characteristic of IC, avoid the test result interfered by parasitic inductor, output capacitor, and contact resistor. It is necessary to follow the recommendation as follows. Please,

- 1. Add 1000 μF of capacitor between VIN and GND, and close to IC.
- 2. Remove output capacitor.
- 3. Shorter the short circuit device wire.
- 4. Measure output current (IOUT).

TYPICAL PERFORMANCE CHARACTERISTICS

(Condition: VIN=5V, CIN=1µF, COUT=10µF, unless otherwise noted.)

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

FUNCTIONAL BLOCK DIAGRAM

Figure 6. TMI6263AH Block Diagram

APPLICATION INFORMATION

The TMI6263 is current-limited, power distribution switches using P-channel MOSFETs for applications where short circuits or heavy capacitive loads will be encountered and provide up to 2.4A of continuous load current. Additional device shutdown features include over temperature protection and reverse-voltage protection. The driver controls the gate voltage of the power switch. The driver incorporates circuitry that controls the rise and fall times of the output voltage to limit large current and voltage surges and provides built-in soft-start functionality. The TMI6263 enters constant current mode when the load exceeds the current-limit threshold.

Input and Output

IN (input) is the power supply connection to the logic circuitry and the drain of the output MOSFET. OUT(output) is the source of the output MOSFET. In a typical application, current flows through the switch from IN to OUT toward the load. OUT pin must be connected together to the load.

Soft Start for Hot Plug-In Applications

In order to eliminate the upstream voltage droop caused by the large inrush current during hot-plug events, the "soft-start" feature effectively isolates the power source from extremely large capacitive loads, satisfying the USB voltage droop requirements.

Setting Current Limit (TMI6263B Only)

The over-current threshold is user programmable via an external resistor. The TMI6263B use an internal regulation loop to provide a regulated voltage on the ILIM pin. The current-limit threshold is proportional to the current sourced out of ILIM. The recommended 1% resistor range for R_{ILIM} is $2.5k\Omega \le RILIM \le 17k\Omega$ to ensure stability of the internal regulation loop. Many applications require that the minimum current limit is above a certain current level or that the maximum current limit is below a certain current level, so it is important to consider the tolerance of the overcurrent threshold when selecting a value for R_{ILIM} . The following Figure 6 can be used to select the resulting type over-current threshold for a given external resistor value (R_{ILIM}).

ILIMT=6800/RILIM

TMI6263B ensure that maximum Current Limit threshold is below 3A, it is important to avoid current limiting upstream power supplies causing the input voltage bus to drop

Figure 6. ILIMIT vs. RILIMIT

FLG Function (TMI6263A TMI6263D TMI6263Eonly)

The nFLG open-drain output is asserted (active low) when an over current condition is encountered after a 7ms deglitch timeout. The nFLG output remains asserted until the over-current condition is removed. Over temperature condition is also reported by nFLG open-drain output. In addition, nFLG is also asserted (active low) in output reverse-voltage condition when the output reverse-voltage condition is removed.

TMI and SUNTO are the brands of TOLL microelectronic .

TMI6263

Thermal Shutdown

The TMI6263 has internal over temperature protection to shut down the device when its junction temperature exceeds 150°C with over load current condition, then after the device is disabled, if the junction temperature drops 20°C hysteresis typically the device will resume and restart to work. The switch continues to cycle off and on until the over current fault is removed.

EN/nEN, the Enable Input

EN/nEN must be driven logic high or logic low for a clearly defined input. Floating the input may cause unpredictable operation, so please do not float EN/nEN input pin.

Layout Consideration

For best performance of the TMI6263, the following guidelines must be strictly followed.

- 1) Input and output capacitors should be placed close to the IC and connected to ground plane to reduce noise coupling.
- 2) The GND should be connected to a strong ground plane for heat sink.
- 3) Keep the main current traces as possible as short and wide.

PACKAGE INFORMATION

SOT23-5

Unit: mm

Sumphal	Dimensions I	n Millimeters	<u>Cump hal</u>	Dimensions In Millimeters		
Symbol	Min	Max	Symbol	Min	Max	
	2.82	3.02	E1	0.85	1.05	
В	1.50	1.70	а	0.35	0.50	
С	0.90	1.30	С	0.10	0.20	
L1	2.60	3.00	b	0.35	0.55	
E	1.80	2.00	F	0	0.15	

Note:

1) All dimensions are in millimeters.

2) Package length does not include mold flash, protrusion or gate burr.

- 3) Package width does not include inter lead flash or protrusion.
- 4) Lead popularity (bottom of leads after forming) shall be 0.10 millimeters max.

5) Pin 1 is lower left pin when reading top mark from left to right.

PACKAGE INFORMATION

TSSOP8

Top View

Side View

COMMON DIMENSIONS (Unit of Measure = mm)

TOLL Microelectronic

SYMBOL	MIN	NOM	MAX	NOTE
D	2.90	3.00	3,10	2,5
E		0.40 BSC		
Et	4,30	4.40	4.50	3, 5
A	-	-	1.20	
A2	0.60	1.00	1.95	
b	D.19	4	0.30	4
e		0.85 BSC		
L	0.45	0.60	0.75	
LI		1.00 REF		

TMÍ SUNTO

TAPE AND REEL INFORMATION

TAPE DIMENSIONS:

Note:

- 1) All Dimensions are in Millimeter
- 2) Quantity of Units per Reel is 3000
- MSL level is level 3. 3)